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Abstract and Keywords

Evolution generally demands that the brain take advantage of the probable statistical 
structure in the natural environment. Much research in recent decades has confirmed 
that regular statistical features in natural scenes—especially low-level spatial regularities 

—can help explain processing strategies in the human visual system. Basic statistical fea­
tures in various classes of human-created images broadly match those found in natural 
scenes. Such regularities can be seen as evolved constraints on the visual structure of 
aesthetic images and therefore human visual aesthetics. Some researchers have also at­
tempted to find statistical features whose variation from natural images is associated 
with variations in preference and other aesthetic variables. There is evidence that varia­
tions in statistical features of luminance and color could be exploited by the visual system 
in certain situations. However, there is much ambiguity and variability in most reported 
relationships between variations in image statistical features and variations in measures 
of human aesthetics. In contrast, basic statistical constraints that align with efficient visu­
al system processing are almost never violated in aesthetic images. Put simply, statistical 
features may constrain but may not explain variability in visual aesthetics. The chapter 
concludes with an outlook on future directions for research.

Keywords: Statistical regularities, efficient coding, natural scenes, art perception, skewness, visual system, retina, 
deep learning

Statistical Regularities in Images: An Introduc­
tion
Neuroscientific investigations of statistical features in images are now a well-established 
field of study. A “feature” in this case means a characteristic or regularity of an image 
that is reflected in measures of image structure, such as pixel values. Statistical features 
in natural images are relevant to visual neuroscience because of evolutionary constraints 
on visual systems, which demand that sensory systems operate parsimoniously in their 
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ecology. Neuroscience has come to see the brain more generally as capable of adapting 
over evolution and development to take advantage of the likely physical structure of the 
external world, whether the structure is the visual environment, the auditory scene, spo­
ken language, or other inputs. In other words, the brain has been shaped by the need to 
take advantage of statistical regularities in the environment.

Regularities in Spatial Statistics

Power Spectra

In terms of vision, this line of argument can help explain the evolved structure of the ear­
ly visual system. Consider spatial statistics. A simple relationship exists between any two 
neighboring points in a visual scene: on average, they are likely to be similar in terms of 
light intensity, and this similarity falls off as the two points become more distantly sepa­
rated. This regularity holds for the most part regardless of how big your two “points” are, 
or what you are looking at. By pointing your finger in a pseudorandom direction in your 
environment and assessing light intensity at the pointed-to location, as well as immediate­
ly to its right (or left, up, down, etc.), you can confirm this for yourself. This property does 
not always hold, but it is likely to hold over many samples. As a regularity, this feature—a 
correlation in pairwise intensity—is something the visual system can take advantage of to 
make its job of encoding and transmitting information more efficient.

In the case of pairwise correlations, one can explain basic neural encoding strategies in 
the retina as an evolved processing strategy that takes advantage of such correlations. In 
other words, retinal interneurons assume that visual input from the world will have pair­
wise correlations like those in nature. Consequently, these cells mostly respond in areas 
of the scene where pairs of neighboring points are not correlated, such as edges (Atick & 
Redlich, 1992; Graham et al., 2006). This makes sense because edge contours often de­
fine objects, and object detection, segmentation, and recognition are among the most crit­
ical functions of primate vision. Efficient retinal processing strategies of this kind are 
shared by all primates and indeed nearly all mammals and other vertebrates. For reviews 
of statistical regularities in natural scenes and their relevance to models of vision coding, 
see for example, Field, 1994; Geisler, 2008; Simoncelli & Olshausen, 2001).

In vision science, basic spatial regularities are generally measured using the power spec­
trum of spatial frequencies in an image. The power spectrum measures the relative con­
tributions of sine-wave patterns of varying spatial frequency in the composition of an im­
age. The sine waves in this case describe the intensity of basis functions, which look like 
stripes of differing size, number, and orientation (see Figure 1A). Mathematically, such 
two-dimensional sine-wave basis functions vary in terms of frequency, amplitude, orienta­
tion, and phase. Any image can be broken down into a collection of such basis functions 
using Fourier analysis; it can also be reassembled from the appropriate “recipe” of basis 
functions using the same mathematical machinery.
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Figure 1.  (A) Sine-wave gratings of various frequen­
cies (increasing from left to right), amplitudes, and 
orientations. (B) Natural scene and its corresponding 
power spectrum. Any image can be decomposed into 
sine-wave components: the power spectrum (shown 
in blue) measures the contribution of each spatial 
frequency to the structure of the image, averaged 
over orientation. This function shows approximately 
linear fall off (shown in red) on logarithmic axes. 
Natural scenes typically have a slope of around –2 
(this example has a slope of –2.6).

The lowest spatial frequencies correspond to basis functions that alternate only once be­
tween white and black (we are ignoring color for the moment), at any orientation. A 
strong contribution to low frequency content in images would be a horizon line separat­
ing bright sky from darker land. And indeed, such ecological structure—being so common 

—contributes most to the typical power spectrum of the natural visual world. High fre­
quencies, on the other hand, correspond to fine detail in a scene. Although humans glean 
important information from high spatial frequencies, they constitute only a small fraction 
of the image’s spatial variation. Overall, when spatial frequency is plotted against the 
contribution of that frequency to image structure on logarithmic axes, we see a straight 
line with a negative slope. The relationship between power S and spatial frequency f can 
be approximated mathematically as: S = fp, where p is about equal to –2 for natural im­
ages. As mentioned earlier, it does not matter how large the “points” are that one consid­
ers in pairwise correlations: this is the “scale invariance” implied by the relationship S = f 

, which is equivalent to S = 1/f . That is, power spectra display “1/f (one-over-f)” scaling 
(see e.g., Bak et al., 1987). Mathematically, p describes the fall off of the typical natural 
scene power spectrum with increasing spatial frequency. In particular, p describes the 
slope of the power spectrum when plotted on logarithmic axes. Note that some authors 
alternatively investigate the spatial frequency amplitude spectrum, which is the square 
root of the power spectrum; plotted on logarithmic axes, its typical slope for natural 
scenes is –1, or simply p/2. See Figure 1B.

–2 2
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The power spectrum description is equivalent to measuring pairwise similarities of each 
point (pixel) in an image with all of its neighbors; the power spectrum description is more 
flexible and formalized (and therefore in most common use in vision science), but think­
ing of the pairwise correlation structure can be more intuitive. This chapter will continue 
to refer to pairwise correlations where appropriate, though the following sections are pri­
marily elaborated in terms of the power spectrum description.

Power Spectra and Aesthetics

Art Images
Given these relationships, one may suppose that what is “natural” in terms of statistical 
features has a special place in human visual aesthetics. To a first approximation, this is 
the case. Consider a class of images often created for aesthetic purposes: artwork. Di­
verse collections of art images are known to have similar regularities in terms of statis­
tics relevant to vision coding. For example, large samples of art images have a similar 
pairwise correlation structure as natural scenes. In particular, Graham and Field (2007) 
and Redies et al. (2007a) separately found essentially the same spatial regularities in dif­
ferent large samples of world artwork, with p having an average value of around –2 in 
both studies (see Graham & Redies, 2010, for a review).

To some extent this is unsurprising: although art styles vary widely within and across cul­
tures, all art images are to a greater or lesser extent intended for the human eye and 
therefore must make use of visual patterns that our visual system is adapted to. Indeed, 
the variation in p for natural and artistic images of varying types is relatively small (see 
Table 1). This general consistency extends to abstract artwork including artwork pro­
duced with a degree of randomness, such as Jackson Pollock’s drip paintings (Graham & 
Field, 2008a). Thus, even when artists are not depicting natural scenes, or when they em­
ploy randomness, they almost always follow the basic spatial regularities of natural 
scenes.
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Table 1. Slope value (−p) for log-log plots of radially averaged Fourier 
power versus spatial frequency for different categories of natural and 
artistic images (from Graham & Redies, 2010).

−p SDa nb

Natural scenesc,d −2.0 0.3 208

Photographs of plantsc −2.9 0.4 206

Photographs of simple objectsc −2.8 0.3 179

Photographs of facese,f −3.5 0.2 3313

Graphic art of Western provenancec −2.1 0.3 200

Artistic portraits (graphic art)e −2.1 0.3 306

 15th century −2.0 0.2 20

 16th century −2.1 0.2 89

 17th century −2.1 0.4 34

 18th century −2.2 0.1 18

 19th century −2.2 0.4 50

 20th century −2.2 0.3 95

 Etching −2.0 0.3 50

 Engraving −2.1 0.2 17

 Lithograph −2.2 0.2 27

 Woodcut −2.4 0.4 13

 Charcoal, chalk −2.2 0.3 100

 Pencil, silver point −2.0 0.2 59

 Pen drawing −2.1 0.3 31
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Scientific illustrationsc −1.6 0.3 209

 Standard deviation.

 Number of images in each category.

 Data from the study by Redies, Hasenstein et al. (2007).

 Images from the database of van Hateren and van der Schaaf (1998)

 Data from the study by Redies, Hänisch et al. (2007b).

 AR face database of Martinez and Benavente (1998).

White Noise
However, it is not necessary to presume that artistic images have a special place in aes­
thetics (cf. Nadal & Skov, 2018) in order to find evidence in support of the idea that basic 
statistical regularities that are relevant to vision coding also shape our visual aesthetics. 
For example, one can see prima facie that very statistically unnatural images such as 
white noise (Figure 2A) are not attractive. White noise is created by randomly assigning 
the intensity at each pixel. This class of images has an average pairwise correlation of ze­
ro (since each pixel value is chosen independently of its neighbors), and, correspondingly, 
a power spectrum slope p = 0. The latter result indicates that the contribution to image 
structure across spatial frequency in white noise is uniform.1

Because white noise images are very unlike the natural visual world to which humans are 
evolutionarily adapted, there is a sense in which we can’t even see them. For example, 
the white noise images shown in Figure 2A look indistinguishable, yet each one is utterly 
different from the others. Indeed, any pair of white noise images is likely to be far more 
different in terms of spatial structure than a given pair of natural images (see Chandler & 
Field, 2007). The visual system has adapted to a correlated world, and not to the uncorre­
lated world of white noise. In comparison, a random selection of images that has the pair­
wise regularities like those natural scenes but are otherwise completely random—1/f 
noise—will appear rather pleasant, perhaps reminiscent of cloud-watching (Rogowitz & 
Voss, 1990); such images are also readily distinguishable (Figure 2B).

a

b

c

d

e

f
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Figure 2.  (A) White noise images, where each pixel 
value is chosen at random (in this case from a Gauss­
ian distribution). In each image, a given pixel value is 
likely to be quite different from that of the corre­
sponding pixel in the other images, and therefore 
these images are utterly different from one another. 
However, they are essentially indistinguishable. 
These images all have a flat power spectrum (slope = 
0). (B) Noise images that possess 1/f scaling in their 
power spectra, i.e., 1/f noise. These images are also 
random, but have the same basic spatial statistical 
regularity as natural scenes, with a power spectrum 
slope of approximately −2.0. Such images are easily 
distinguished. (C) Blurry images that show power 
spectrum slope of around −6.0.

In terms of production, white noise has probably been created only twice by hand: this 
feat of craft was first accomplished by Attneave (1954). In this seminal paper on efficient 
visual system encoding, two military enlistees darkened approximately 20,000 squares by 
hand according to randomly generated numerical values. This feat was also accomplished 
by the French artist François Morellet in his painting Random Distribution of 40,000 
Squares Using the Odd and Even Numbers of a Telephone Directory, 1960 (Mather, 2013; 
see Figure 3A). Viewed from the perspective of art history, humans have produced copi­
ous numbers of monochrome paintings and other handmade images that are in a way im­
perceptible (in the sense of having no spatial variation), but only two that resemble white 
noise. Interestingly, however, the red and blue pigments Morrellet used are essentially 
equiluminant (Figure 3B), so the image may be processed more like a monochrome. Thus, 
in terms of empirical aesthetics, noise images hold a special place as an almost universal­
ly disliked stimulus. However, beyond dislike, it would be interesting to know how hu­
mans treat such images in an aesthetic context—do they feel disgust or other negative va­
lence emotions, or no emotions at all? Do they prefer a disgusting image to white noise?
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Figure 3.  (A.) François Morellet, Random Distribu­
tion of 40,000 Squares Using the Odd and Even 
Numbers of a Telephone Directory, 1960. Museum of 
Modern Art, New York. B. The same image with color 
information removed: pixel values represent light in­
tensity.

Figure 4.  Philip Barlow, Refuge II, n.d. http:// 
www.philipbarlow.com. This image has a spatial fre­
quency power spectrum slope of ~–3.5.

Blur
Images with power spectrum slope values of p much more negative than −2 are also diffi­
cult to perceive, and are also disliked. Such images appear very blurry. Randomly pro­
duced blurry images (e.g., generally those with p > 3, as in Figure 2C) are fairly easy to 
distinguish from one another due to differing location of the “blobs.” However, they also 
seem to provoke frustration and aversion because of their indistinctness. When a natural 
scene is heavily blurred, the effect is the same. Conversely, anyone requiring strong opti­
cal correction can describe the pleasant sensation of seeing the world more clearly when 
they wear spectacles. That is, beyond the practical benefits of seeing the world without 
blur, there may be a related aesthetic dimension.

We can see this in artistic production as well: professional photographs are very rarely 
blurry. As Ke et al. (2006) showed, in a large and diverse set of viewer-rated photographs, 
the statistical presence of blur in an image is an excellent predictor of low image quality 
ratings. In fact, blur was a far better predictor of preference in this study than statistical 
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models that considered contrast, color, edge structure, or brightness. Anecdotally, art­
work that employs substantial blur exists (e.g., the work of South African painter Philip 
Barlow; see Figure 4), but is also very rare. However, even Barlow’s work has a power 
spectrum that is well fit by a straight line on logarithmic axes. And though the image in 
Figure 4 has a slope p that is somewhat outside the normal range for natural scenes 
(around −3.5 by the author’s calculation), it is not nearly as far as that of the very blurry 
images in Figure 2C.

Barlow’s work is of particular interest because he captures in paint something like the 
perceptual experience of humans with substantial optical errors. Since optical errors are 
highly prevalent in industrialized societies (e.g., 96% of 19-year-old males in Seoul were 
found to have myopia; Jung et al., 2012), perhaps researchers should consider how this 
myopia epidemic can affect aesthetics. If most adults see only a blur beyond a certain dis­
tance in depth (without optical correction), do they generally discount aesthetic consider­
ations in this depth regime, for example in urban architecture? Such questions require re­
search but it can be concluded that blur is rare and disliked aesthetically, though it is per­
haps not as rare or as disliked as white noise.

There is also evidence that spatial statistics that differ in other ways from 1/f can be aver­
sive. Fernandez and Wilkins (2008), for example, have shown that excess power in the 
mid-range of spatial frequency (especially high-contrast stripes at around 3 cycles/° in 
spatial frequency)—relative to natural spectra—generates discomfort. They argue that 
this discomfort may be related to conditions of optically induced headache and seizure. 
Thus, images that deviate strongly from natural spatial statistics may be disliked not only 
because they are imperceptible, but perhaps also because they negatively interfere with 
other brain processes.

The Perceptibility Hypothesis
In terms of image statistics, then, we like what is typical. As it turns out, what is pre­
ferred is also what we see best, as has been shown by Spehar et al. (2015). These authors 
tested human viewers on preference and acuity—the latter measured as detection at in­
creasing contrast and as discrimination in terms of just-noticeable differences—for ran­
dom noise stimuli that varied in their power spectrum slope p from –0.2 to –5.0. They 
found that there was a strong relationship between images that were best perceived and 
those that were preferred, which in both cases corresponds to a value of p of roughly –2. 
In other words, there is a very similar inverted U-shaped distribution for both preference 
and visibility as a function of power spectrum slope p, which is centered around p = –2. At 
the extremes of the distribution of p values, blurry images were somewhat preferred to 
white noise-like images. The same relationship between acuity and preference held for 
sine-wave gratings of varying spatial frequency. Thus, humans cannot detect or discrimi­
nate images with statistical features characteristic of white noise and blur, and we dislike 
those images, too. Noise images with natural spatial statistics, on the other hand, can be 
readily detected and discriminated, and are therefore preferred (see Figure 2). The idea 
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that we generally prefer what is typical because we see it best has been termed the per­
ceptibility hypothesis (Graham & Field, 2008a).

Fractal Dimension Statistics
Before considering statistical features beyond power spectrum slope, it is worth a brief 
diversion to discuss the concept of “fractal dimension,” since it is related to the power 
spectrum. Fractal dimension is defined as a measure of the degree to which a single line 
fills up a plane, or the degree to which a single plane fills up a volume, due to fractal 
structure (see e.g., Mandelbrot, 1982). Fractals in this case are mathematical objects that 
are both self-similar and scale invariant: they show the same patterns of structure at all 
spatial scales, and are generated according to deterministic recursive functions.

The idea of fractal dimension has been applied to real-world (nonmathematical) objects as 
well, but it is important to note that it can only be approximated. Often, fractal dimension 
is approximated by calculating box dimension, which works as follows: an object is de­
fined in terms of a binary boundary. A grid of boxes is overlain on the boundary, and the 
fraction of filled boxes is tallied. This is repeated with larger and smaller grids over sever­
al orders of magnitude. The function relating box size to the fraction of boxes required to 
cover the boundary at that size determines the box dimension. This procedure can be 
used to understand the space-filling quality of real-world binary boundaries such as coast­
lines, where the boundary is meaningful. But its application to images is ambiguous. Typi­
cally, images are thresholded to produce such boundaries (e.g., Viengkham & Spehar, 
2018). But thresholding produces quite unnatural silhouette-like images, whose power 
spectra (and other image statistics) are greatly altered relative to the original image. In­
deed, few if any parts of the natural visual world consist solely of binary boundaries; most 
boundaries are in fact low contrast (Ruderman & Bialek, 1994), which is likely the case 
with artwork as well given the limitations in its dynamic range of luminances (see Gra­
ham, 2011).

Moreover, even if such boundaries were meaningful, Normant and Tricot (1991) have 
shown that the box dimension metric is only an accurate measure of fractal dimension for 
images that are both scale invariant and self-similar (see also Kube & Pentland, 1988). 
Since natural images and art images are not self-similar, box dimension measurement is 
an unreliable measure of their fractal dimension (see Soille & Rivest, 1996; Theiler, 
1990). It should also be noted that the application of box dimension alone as a character­
istic of authorship of abstract artwork (e.g., for stylometrics or attribution, e.g., Taylor et 
al., 1999) has been refuted (Jones-Smith & Mathur, 2006).

If a correspondence between visual perception and fractal dimension did exist, it would 
likely involve the “2D” box dimension (the degree to which a 2D plane fills 3D space), 
rather than the “1D” box dimension (the degree to which a 1D boundary fills a 2D plane). 
This could be done for example by considering an image as an intensity surface filling a 
3D volume. In this case, fractal dimension Df is linearly related to the slope p of the spa­
tial frequency amplitude spectrum: p = 8 – 2Df (Knill et al., 1990). This relation holds for 
all images whose spatial frequency power spectra are well-described by the function 1/fp. 
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However, nearly all research concerning “fractal dimension” of images measures instead 
the “1D” box dimension. Ultimately, then, box dimension is a flawed statistical feature in 
natural and artistic images, whereas the spatial frequency power spectrum slope yields a 
robust and accurate measure of the same spatial regularities. Researchers are thus en­
couraged to work within spatial frequency statistics, a formalism particularly suited to 
patterns in the physical world, as opposed to fractal analysis, which is most germane to 
mathematical objects.

Higher-Order Spatial Statistics

Are Artistic Images Special?
So far we have only considered spatial regularities of the lowest statistical order, which 
concern relationships between pairs of points (pixels). In an image, there may exist rela­
tionships among more than two pixels, which are called higher-order spatial statistical 
regularities. Such regularities are generally difficult to measure in images because of the 
combinatoric explosion of possible triplets, quadruplets, and so on; the difficulty in mea­
surement is further exacerbated by the difficulty of describing any such regularities 
graphically or numerically. However, higher-order structure that is relevant to vision cod­
ing can be explored using spatial filters that resemble those employed in early visual sys­
tem spatial processing, such as the Gabor-like spatial filters of V1 simple cells. Because 
simple cell-like filters appear to efficiently encode “sparse” higher-order statistical struc­
ture in natural scenes (Bell & Sejnowski, 1997; Olshausen & Field, 1996), their responses 
give an indication of the higher-order spatial regularities most important to primate vi­
sion coding.

One line of argument holds that artistic images are a special class of images due to their 
higher-order statistical properties. Christoph Redies and colleagues have performed nu­
merous experiments that provide evidence for this proposition.

First, consider faces: as a class, faces are processed in the visual system using special­
ized mechanisms. For example, face processing such as symmetry detection is most effec­
tive for upright faces (Rhodes et al., 2005). If artists aim to exploit these mechanisms, 
they should reproduce the typical statistics of real faces. However, artistic portraits devi­
ate in their pairwise spatial statistics compared with photographs of human faces (Redies 
et al., 2007b). Similar findings have been found in terms of higher-order statistics, as de­
scribed below. And Graham and colleagues have found evidence for differences in basic 
structure between faces and handmade face representations, such as frontal portrait 
paintings (Graham et al., 2014), and masks from many world cultures (Prescott & Gra­
ham, 2020).

Special statistical features for artwork as an image class may not be limited to low-level 
structure. Redies and colleagues have also shown that, in artworks of different styles, lo­
cal spatial structure is distinct from what is typical in other image classes, such as pho­
tographs of objects and facades. The higher-order structure they measured, termed edge 
orientation entropy, captures regularities in how edges continue in an image. In this 
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analysis, edge elements are detected using a standard image-processing algorithm. Then 
each edge element’s orientation is compared with that of its neighbors, or to all other 
edges in the image. One can then create a distribution of edge orientations as well as a 
distribution of edge relationships (as circular histograms). Uniformity in these distribu­
tions can be described in terms of their entropy. In the case of edge relationships, high 
entropy (i.e., uniformity) means that knowing a given edge’s orientation tells one little 
about the orientation of other edges in the image, such as neighboring edges. Redies and 
colleagues found that artworks from numerous Western “high” art styles show quite simi­
lar distributions of edge orientation entropy, which are similar to those of certain natural 
scene categories such as large vistas. Similar results were found when the art was 
grouped by subject matter. Artworks are distinct in this sense from faces, as well as from 
several classes of human-created objects and architecture (Redies et al., 2017). Related 
results have been shown for artificial neural network systems that learn higher-order sta­
tistical regularities: diverse artwork from across Eurasia tends to group together in terms 
of its optimal neural network representation, in a way distinct from other human-created 
objects and buildings, as well as certain varieties of natural scenes (Brachmann et al., 
2017; see also section Deep Learning, below). Also, when artists depict natural scenes, 
they tend to de-emphasize spatial frequency energy of horizontal and vertical orientations 
compared with natural scenes, which have disproportionate energy in cardinal orienta­
tions (Schweinhart & Essock, 2013).

However, it is not clear that all or even most artistic images occupy a special place in 
terms of human aesthetics because of their statistical properties (to say nothing of their 
purported specialness vis-à-vis cognitive appraisal or cultural context). To the extent that 
artwork is different from other image classes in terms of statistical features, this may be 
due to materials and compositional factors. For example, artists have freedom to create 
edges on a blank 2D canvas, typically using styli whose width falls in a small range. The 
2D retinal image of the 3D physical world, on the other hand, can be modeled in a gener­
ative fashion from objects with power-law scaling in size, which can occlude each other, 
along with biases for cardinal orientations due to horizons, buildings, and trees (Ruder­
man, 1994, Switkes et al., 1978). In other words, the causes of statistical structure in nat­
ural images are distinct from those in art images because they are composed in funda­
mentally different ways. It is also possible that occlusions of objects in handmade art oc­
cur less or in different ways than in other classes of images. That is, humans may general­
ly try to avoid depicting objects in handmade flat media using arrangements that produce 
a “bad” Gestalt due to occlusion. There is currently no evidence that “good” arrange­
ments of objects are reflected in basic or higher-order spatial statistics. The distinctness 
of art from other artificial objects and buildings may also be explained by photographic 
biases in the former (McManus et al., 2011) and by rectilinearity in the latter. In any case, 
when considering the diversity of art styles beyond Western “high” art (Redies & Brach­
mann, 2017), as well as variations across time (Mather, 2018) and in art by neuroatypical 
individuals (Graham & Meng, 2011a), there is considerable variation in statistical regular­
ities at low and high orders, which overlaps with what is typical in other image cate­
gories. However, to a first approximation, nearly all artwork shows the same 1/f power 
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spectra as that typical of natural scenes. Moreover, despite differences in image statis­
tics, artistic representations show similar basic perceptual responses: for example, por­
trait and landscape paintings can be discriminated by humans with similar accuracy com­
pared with photographs of faces and landscapes when stimuli are presented rapidly (Gra­
ham & Meng, 2011b).

Bearing in mind these complexities, we may now ask whether variations in aesthetic re­
sponse may be predicted by variations in higher-order statistical features. That is, given 
that low-level statistical regularities exist and are associated with preference, are varia­
tions in higher-order statistics correlated with or predictive of particular dimensions of 
aesthetic perception? Redies and colleagues have found that aesthetic ratings of images 
of several kinds of human-created objects and artificial patterns are correlated with high­
er entropy in edge orientations for those images, which is in turn partially predicted by 
the perceived curvilinearity of those images (Grebenkina et al., 2018). However, for the 
most nominally “artistic” of the image categories tested in this study—music album cover 
art—higher-order statistics (and post-hoc combinations thereof) explained only a quarter 
or less of data variance in aesthetic ratings. In this experiment, human-judged curvilin­
earity—a feature that to date has yet to be fully characterized in terms of low- or higher- 
order statistical regularities—explained much greater proportions of aesthetic rating data 
variance.

Though summarizing other research in this vein is beyond the scope of the present chap­
ter (see Brachmann & Redies, 2017), we can summarize the affirmative statistical evi­
dence related to the argument of Redies and colleagues as follows:

• Artwork of faces is different from real faces, and more like natural scenes.

• Artwork as a class is distinct from other human-created objects as well as faces and 
some natural scene categories.

• There is an association between aesthetic preference and a statistical feature that re­
sembles curvilinearity for artificial objects and patterns.

Nevertheless, there is considerable ambiguity in the relationships between variations in 
higher-order statistics and aesthetics, and indeed in the statistical specialness of 
“artwork” (whether or not one believes artwork holds a special place in aesthetics).

On the other hand, it has been established that humans do have a preference for low-lev­
el spatial statistical regularities associated with natural and easily perceptible visual stim­
uli. One could speculate that, beyond general preference for pairwise spatial regularities 
due to efficient and widely shared coding strategies in the early visual system, visual aes­
thetics may not be an important enough neural function to warrant rigorous optimization 
for particular variations in low-order (or, for that matter, higher-order) spatial statistical 
features.

As we shall see once we look beyond spatial statistics, the visual system does not have a 
default aesthetic response to specific statistical properties in images, although general 
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Figure 5.  Natural scene and its intensity (pixel val­
ue) histogram. This histogram is roughly lognormal 
in shape and has a skewness of +1.1. Note that the 
scene image is not calibrated for luminance: because 
cameras compress high luminances in scenes more 
than low luminances, the true distribution of lumi­
nances in this scene extends much farther into the 
high luminances, and would likely have a corre­
spondingly higher skewness.

“rules” can be described for certain applied perceptual situations. Nor is what is natural 
necessarily what is aesthetically preferred in these cases.

Regularities in Luminance Statistics
One can appreciate the complexity of the situation by considering luminance distribution 
statistics, or the proportion of high-, middle-, and low-intensity light in an image. This 
area of research traces back to some of the first empirical work on efficient coding of nat­
ural scene regularities, which involved studies of natural luminances in insect vision 
(Laughlin, 1981). To a first approximation, scene luminances (light intensities) in natural 
daylight follow a lognormal distribution (Attewell & Baddeley, 2007; Brady & Field, 2000; 
Dror, Leung, Adelson, & Willsky, 2001). A lognormal distribution is a distribution whose 
logarithm is Gaussian. This means that most pixels in a natural scene send relatively low 
intensities of light to our eyes (the peak in the low intensities), but natural scenes also 
have intensities that extend far into the high intensities (the “heavy tail” of the distribu­
tion). In terms of descriptive statistics, symmetrical distributions like a Gaussian distribu­
tion have skewness (the third statistical moment) of 0, whereas natural scenes typically 
possess intensity distributions with skewness greater than 0, due to their approximately 
lognormal shape. See Figure 5.

Thus, we might expect to find that humans prefer this regularity. Indeed, this is what we 
would predict if we posit that low-level preferences follow from their statistical efficiency 
relative to sensory encoding. In particular, because cone photoreceptors respond in 
roughly logarithmic fashion at increasing light intensity, lognormally distributed scene in­
tensities would be encoded as Gaussian responses, thereby making maximal information- 
theoretic use of the encoding mechanism of cone excitation.
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Figure 6.  Glossiness and histogram (Yang et al., 
2011).

In certain circumstances, there does appear to be a preference for high skew. For exam­
ple, Yang et al. (2011) found that 7–8-month-old infants preferred to look at computer- 
simulated 3D objects that had high skewness in their intensity distributions (Figure 6). 
However, this was only the case when the high skewness corresponded with high glossi­
ness (i.e., when bright highlights in the image accurately indicated glossy material re­
flectance). But there is also evidence that humans can accurately judge the freshness of 
photographs of real fruit and vegetables from small image patches, and that luminance 
distribution skewness by itself partly contributes to the accuracy of such judgments 
(Arce-Lopera et al., 2012; Wada et al., 2010). There is also evidence that higher values of 
luminance distribution kurtosis (the fourth statistical moment of the distribution, which is 
generally higher for distributions with high skew) are associated with preference for ab­
stract art, explaining 25% of data variance (Graham et al., 2010). Taken together, this line 
of work suggests that some image classes (including those depicting single glossy ob­
jects) that show high luminance distribution skewness may be generally preferred.

Conversely, however, Graham et al. (2016) have shown that versions of a natural image 
manipulated to have high skew are systematically disliked compared with those manipu­
lated to have low skew. For outdoor scenes, Graham et al. (2016) found that humans gen­
erally prefer skew lower than what was present in the original scene. That is, we prefer 
natural scene images to be substantially altered in terms of their luminance distributions 
relative to what is natural. In a suite of studies, artistic photographs of Western U.S. land­
scapes as well as images from a standard natural scene database were manipulated to 
change their skew. This procedure leaves the mean and variance of the intensity distribu­
tion (and, of course, spatial relationships of pixels in the image) unchanged. Regardless of 
the inclusion of glossy objects in the scenes—and even when pixels were randomly scram­
bled—human viewers consistently preferred low-skew versions of the images. This finding 
may not be so surprising when we consider that human painters overwhelmingly produce 
low-skew images (Graham & Field, 2008a). In part, the low-skew bias in artwork is due to 
the limited dynamic range of luminances available for 2D reflective objects (see Graham 
et al., 2008b), but aesthetic demands may also bias human artists toward low-skew im­
ages. Indeed, it is possible to make high-skew images by hand, but because of the limited 
dynamic range, such images will necessarily be mostly quite dark, with a few highlights.
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Otaka, Shimakura, and Motoyoshi (2019) have also investigated luminance regularities in 
images of skin patches. Since the material properties of skin are closely associated with 
biologically relevant aesthetic judgments such as attractiveness, this is a potentially use­
ful arena for understanding statistical features related to aesthetics. Otaka and col­
leagues (2019) found that a range of perceptual judgments such as glossiness, smooth­
ness, healthiness, and evenness can be summarized into two subjective factors: “good­
ness” and “glossiness.” These factors in turn showed high correlations to simple lumi­
nance and color statistics, particularly the variance, skew, and kurtosis of the images’ lu­
minance and color distributions. Interestingly, both the glossiness attribute and the 
“goodness” factor were anticorrelated with luminance distribution skewness. In other 
words, low skew is preferred.

Thus, it appears that humans may have a general taste for low-skew scenes (at least for 
complex outdoor scenes, and to a lesser extent, skin), which artists have, on average, at­
tempted to sate. Again, the artwork result (Graham & Field, 2008a) may be related to 
perceptibility: although one can make a high-skew image by hand, it will be mostly dark; 
lower-skew images may have more detail to explore, making them in a way more percep­
tible. However, in certain functional situations, on the other hand, such as judging fruit 
and vegetable ripeness we may be particularly attuned and attracted to high skewness 
associated with glossiness. But it should be said that researchers have criticized this ap­
proach on theoretical and empirical grounds (see e.g., Anderson & Kim; 2009; Fleming, 
2014). It is certainly not the case that a particular skew of the luminance distribution will 
guarantee preference (or, for that matter, glossiness). The possible neurobiological under­
pinnings of such a process also remain undefined.

Regularities in Color Statistics

Uniform Color Patches

Color is another realm where basic statistical features have been investigated in terms of 
empirical relationships with aesthetics.

Karen Schloss, Stephen Palmer, and colleagues have performed extensive research across 
diverse populations to determine mean preferences for small patches of color presented 
in isolation. In a series of experiments, Palmer and Schloss (2010) established a logical 
chain of evidence connecting numerical liking ratings for color patches and liking ratings 
of natural objects of the same color. In particular, color patches whose hue is commonly 
associated with objects whose average rated valence is positive are generally rated more 
highly than color patches whose hue is commonly associated with objects whose average 
rated valence is negative. For example, mean preference across individuals generally fa­
vors blue and disfavors brown: in turn, Palmer and Schloss (2010) show systematic evi­
dence that humans judge canonically blue objects like clear sky and clean water as posi­
tive, while we judge canonically brown objects like feces and rotten food as negative.
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What can these results tell us regarding color statistics? Generalizing from color patches 
to objects is difficult—we may make like a particular color only in a particular context, or 
in a particular functional situation (Schloss et al., 2013). Indeed, the spectral composition 
of the color could be the same in differing objects where a color is alternatively liked and 
disliked. We expect our food, for example, to have a predictable color appearance. Wheat­
ley (1973), in a classic study, asked diners to enjoy a steak dinner in a room with dim 
lighting. When lighting was increased to a normal level partway through the meal, sever­
al diners reportedly became ill upon realizing that their otherwise delectable steak had 
been artificially colored blue (see Spence, 2015). So, whereas we may like a wavelength 
spectrum with increased energy in the short (blue) wavelengths when it is produced by, 
say, the sky, we will not necessarily like a similar collection of wavelengths when pro­
duced by something that does not normally appear blue. In any case, an understanding of 
the human species’ most and least favorite colors is not necessarily a question that is use­
fully described using the language of statistics—this is in part because, even in a simple 
experiment, human responses can only be sampled for a limited number of the millions of 
discernible colors (Linhares et al., 2008); the combinatorics problem gets much worse 
when even simple color combinations are considered.

Artwork

Again bearing in mind the nonidentity of aesthetics and artwork, we can glean a meaning­
ful understanding of relationships between color statistics and aesthetics by examining 
art. Empirical understanding of color statistics in art may be useful because Western 
artists in particular have historically paid close attention to natural color appearance and 
its vicissitudes, and they have invented diverse pigments for this purpose (though art tra­
ditions in the West and elsewhere have also greatly emphasized abstract color symbol­
ism).

Montagner et al. (2016) used multispectral imaging to capture narrow-band measure­
ments of wavelength content across the visible spectrum in Western painted artwork. 
They found that artists use more saturated red colors and fewer greens than are typical 
in natural scenes, but otherwise artists mostly matched natural colors. This result may be 
related to aesthetics, though other explanations are possible, such as the danger posed 
by standard green pigments, which were historically likely to contain arsenic (Zhao, 
Berns, Taplin, & Coddington, 2008), leading to their disuse. There are also potential bias­
es in natural scene image databases, which may include disproportionate amounts of 
greenery.

However, further experiments using multispectral images of paintings suggest additional 
links between preference and color statistics. In an innovative study, Nascimento et al. 
(2017) investigated preference for rotations of the color gamut in paintings. Such modifi­
cations have the effect of changing the color of each pixel according to its location in a 
perceptually uniform color space, but maintaining the geometric relationships among all 
pixel colors; light intensity (luminance) and spatial relationships of pixels remain constant 
as well. Thus, during gamut rotation, pixels with similar hues in the original painting will 
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Figure 7.  Experimental stimuli from Nascimento et 
al. (2017). The original painting is shown in the cen­
ter image (0•). The color values for pixels in the 
painting in the CIELAB colorspace (with coordinates 
a* and b*) are depicted as the blue blob below the 
painting. As this blob is rotated through the color­
space to different angles of orientation, the corre­
sponding pixels change in their a* and b* color val­
ues, though the overall spatial structure of the image 
remains the same. When humans viewers are able to 
rotate the blob themselves according to preference 
(from a random starting angle, and without prior ex­
posure to the work), they overwhelmingly chose rota­
tion values very close to 0•. This result holds for 
highly abstract works like the one shown as well as 
naturalistic paintings though, interestingly, preferred 
colors for naturalistic paintings were further away 
from the original colors compared to the result for 
abstract works.

stay similar to one another as their hues change together, whereas pixels with very differ­
ent original hues will maintain large differences as their hues change. Multispectral imag­
ing—which captures fine-grained wavelength information invisible to the eye—is required 
in this case to accurately simulate images with rotated color gamuts; see Figure 7. What 
is interesting with regard to empirical aesthetics is that when viewers are given a paint­
ing whose color gamut has been randomly rotated from its original state and are asked to 
rotate it according to their preference, they generally choose the original color axes. In 
particular, average viewer preference for the absolute colors in a given work of art is 
nearly indistinguishable perceptually from the preference for the original work created 
by the artist (Nascimento et al., 2017). This result holds for representational and highly 
abstract works, though, interestingly, preferred gamuts for naturalistic paintings were 
further away from the original colors compared with what was found for abstract works. 
This pattern holds for both art experts and laypersons. Thus, while artists do not neces­
sarily all use the same approach to color harmony, each may find a maximally preferred 
color representation for her particular subject matter. However, preferred color gamuts 
do not fully align with what is typical in nature (nor, it was found, for represented materi­
als of some aesthetic importance such as skin). Thus, from the point of view of color sta­
tistics, artists may in some respects prioritize aesthetic composition over natural render­
ing.

These results represent evidence both of the utility of empirical aesthetics investigations 
using digitized artwork, andthe insights granted by statistical understanding of image 
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features. As Nascimento et al. (2017) note, their conclusions are not predicted by the 
Palmer–Schloss model of preference for color patches in isolation.

In related experiments involving artworks and natural scenes, Nascimento and Masuda 
(2014) and Masuda and Nascimento (2012) used digital simulations of lighting changes 
as well as real-world lighting installations to investigate preferred illuminants. They 
found that humans preferred illumination to be rather different from what is typical in 
daylight: the preferred lighting spectra had more peaks and valleys across wavelength 
compared with natural daylight, which varies more smoothly. Also, humans preferred 
lighting that generated more saturated colors in the art and scenes compared with what 
is produced by daylight illumination.

Thus, while blue may be liked and brown disliked in general (due perhaps to these colors’ 
associations with positive and negative valence natural substances, respectively), and 
while artists and viewers seem to agree on the most pleasing lighting and color relation­
ships in artwork, there is variation in preference compared with what is natural—as with 
the preference for the distribution of luminances in scenes, described in the next section.

Regularities in Spatiotemporal Statistics
As we have seen, regularities of spatial, luminance, and color features can grant insight 
into empirical aesthetics, especially when considered in relation to natural regularities 
and the visual system mechanisms for encoding the retinal image. However, human vision 
is inherently dynamic: if one were to fully stabilize the retinal image, it would fade to 
nothingness (this so-called Troxler fading can be accomplished by physically affixing the 
image frame to the eyeball so that image and retina move together, or by mimicking the 
side-to-side jitter of the eyeball in a display; see, for example, Martinez-Conde et al., 
2013).

Yet little research has been done to investigate spatiotemporal regularities from the point 
of view of empirical aesthetics. This may be because video stimuli take longer for viewers 
to evaluate compared with still images, and thus fewer can be shown during an experi­
ment (though some researchers have developed novel methods for continuous evaluative 
responses, e.g., Muth et al., 2016). Many existing neuroscientific analyses of “natural” 
spatiotemporal patterns study instead Hollywood film (see Hasson et al., 2008) This is be­
cause it is very challenging to create natural movies that fully account for body, head, and 
eye movements, as well as accommodation and binocular disparity. Summarizing how sta­
tistical regularities (especially higher-order spatial regularities) in static image statistics 
vary over time is also challenging.

As soon as humans developed the capability of manipulating images over time, they very 
quickly deviated from what is natural. In particular, they invented the cut, whereby two 
different scenes or two different views of the same scene (i.e., shots) are ordered in se­
quence. But while the approaches filmmakers employ within cuts—as well as the se­
quence of information displayed across cuts—differ from those we experience in daily life, 
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their frequency appears to have grounding in natural vision. Cutting et al. (2010) have 
found that cut length in Hollywood film generally follows a 1/f temporal pattern. That is, 
the length of a given cut is well predicted by the length of cuts nearby in time, and the 
overall the distribution of cut lengths follows a 1/f distribution. Cutting et al. (2011) found 
that, over film history, absolute cut length has gone down, while camera and object mo­
tion within cuts has gone up. These results may be partly due to technological and cultur­
al changes, but the 1/f nature of cuts may also reflect variations in human attentional ca­
pacity over time, which are also found to exhibit 1/f scaling in time (Gilden, 2001).

Of perhaps greater relevance to this chapter is the finding that mean intensity (pixel val­
ue) of frames in Hollywood film has gone down over time (Cutting et al., 2011). A further 
study by Cutting (2014) showed that pixel values show roughly lognormal (positively 
skewed) distributions throughout film history, though more recent films have a greater 
proportion of low- and high-intensity pixels compared with earlier film (suggesting higher 
skewness for recent films, though skewness was not reported). Thus, films considered as 
a whole share a basic regularity of natural luminance distributions. However, because of 
variability in luminance nonlinearities in film and projection, as well as considerable scat­
tering of projected light in a large theater (which would make “black” pixels brighter), 
the luminances received by the retina may not be fully described by pixel value distribu­
tions.

Despite producing spatiotemporal sequences using cuts that would never be experienced 
in nature, filmmakers have produced temporal statistical regularities that may take ad­
vantage of statistical regularities in visual attention over time. This is perhaps not so sur­
prising since human eye movements are so rapid and frequent that our instantaneous 
view of the world is itself fragmentary. The retinal image continually experiences large 
shifts, though not in the same way as film cuts, which are typically structured around sto­
ry-related functions rather than egocentric exploration. In any case, given the dominance 
of film in the aesthetic marketplace, it is clear that capturing attention in this way is ef­
fective. It also appears that film generally reproduces the intensity distribution of natural 
scenes, which feature mostly low intensities.

The Reliability of Aesthetic Responses
In this chapter, as in nearly all published research in empirical aesthetics, it has been as­
sumed that human aesthetic responses can be accurately and consistently measured in 
humans using empirical methods. That is, when someone rates an image as a “5” in terms 
of liking on a 0–9 scale, we grant this measurement an implicit reliability. It is commonly 
acknowledged that individuals’ aesthetics vary considerably, and for reasons that are 
poorly understood (but see recent work by Vessel et al., 2018 and Leder et al., 2016, ad­
dressing individual differences in aesthetics for certain image classes). And very few 
studies have investigated the ways our aesthetics vary at different stages of development. 
Nevertheless, we tend to assume that any individual’s preferences are largely the same 
from one day or week to the next. Therefore, we assume that our measurements of their 

https://global.oup.com/privacy
https://www.oxfordhandbooks.com/page/legal-notice


The Use of Visual Statistical Features in Empirical Aesthetics

Page 21 of 30

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

Subscriber: Claremont University Consortium (Claremont Colleges); date: 19 August 2020

preferences are an accurate empirical gauge of an underlying psychological reality 
termed “aesthetics.”

Yet humans at all stages of the lifespan have been found to be quite unreliable in their 
preferences for identical stimuli from week to week, with young children being most un­
stable. In the first study of its kind, Pugach et al. (2017) measured stability (i.e., test– 

retest reliability) in individuals age 3–99 using a suite of ranking tasks. Participants sepa­
rately ranked images in four classes, containing face photographs, landscape pho­
tographs, and artistic paintings of the same faces and landscape features. They then re­
peated the same task 2 weeks later. In all age groups, participants made on average at 
least one rank change per image in each image class (young children made upwards of 
two rank changes per image).

Other studies, though not specifically concerned with stability/reliability, report correla­
tions within observers of below .75 for aesthetic ratings of faces, natural images, and ar­
chitecture over shorter intervals (Hönekopp, 2006). We can infer that, at most, around 
50% of the variance of a given individual’s preference for visual stimuli can be explained 
by their own previous ratings of the same stimuli. Indeed, even over very short (~15-min) 
intervals, individuals’ aesthetic responses to the same stimuli can be rather different, 
with mean consistency measured at less than .9 for ratings of identical images (Vessel et 
al., 2018). This may in part be because of decreased liking with repeated exposures (Bie­
derman & Vessel, 2006).

On the other hand, the same approach of studying stability/reliability has produced evi­
dence that supports the notion of a “core” visual aesthetics, one that is surprisingly ro­
bust to brain damage. For example, in people with Alzheimer’s related dementia and fron­
totemporal dementia, aesthetic stability for images is not significantly different from age- 
matched controls, though explicit memory is substantially worse in the diseased cohorts 
(Graham et al., 2013; Halpern et al. 2008; Halpern & O’Connor, 2013).

Thus, the study of aesthetic stability suggests that, on average, a hierarchy of basic pref­
erences in the visual domain inheres in all individuals, even in the face of brain damage. 
However, the same research approach suggests that, outside of a fairly consistent aes­
thetic heuristic, there is considerable variability within all individuals in terms of their 
aesthetic responses to individual stimuli over the course of days or weeks. Fortuitously 
for researchers in empirical aesthetics, undergraduates are the most stable age cohort 
(Pugach et al., 2017). However, the variable nature of our aesthetic response for identical 
stimuli is a special concern when we try to discover empirical relationships between sta­
tistical features of images and measures of aesthetic response since statistical features in 
images are unchanging and devoid of context. Further, this problem is an impediment to 
a mechanistic neurobiological understanding of the relationships that may be observed 
between image statistics and aesthetics.
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Summary
Given the evidence considered here, we can summarize how statistical features of images 
can illuminate the study of empirical aesthetics:

1) Humans prefer images with basic spatial statistics in a range around what is typi­
cal for natural scenes, and everybody dislikes images that have very different spatial 
statistics compared with what is typical in natural scenes, such as white noise and 
very blurry images. Irrespective of contextual factors, a 1/f power spectrum with 
slope around –2 is our default expectation for aesthetic images.
2) Smaller variation in slope around p = −2 is not known to be predictive of specific 
aesthetic responses. However, there is some evidence that artistic images from 
across cultures typically share distinctive higher-order statistical structure, though 
the influence of materials and composition cannot be ruled out.
3) Adults and children prefer high skew (i.e., less Gaussian) distributions of light in­
tensity for isolated objects, fruits, and vegetables when there is associated glossi­
ness. But more generally, we prefer lower-skew (i.e., more Gaussian) distributions of 
light intensity compared with what is natural. Handmade artwork is also low in skew­
ness, though Hollywood films may have more highly skewed distributions of light in­
tensity.
4) Observers prefer the way Western painters represent color compared with other 
color representations in a uniform space of color transformations. However, there 
are significant differences between natural color statistics and the preferred statis­
tics of color use in artwork.
5) Temporal statistics of cuts in Hollywood films are also described by a 1/f 
distribution and therefore may fit human attentional capacity. However, cuts are 
themselves rather unnatural representations of spatiotemporal human vision.

Outlook: Where Do We Go From Here?
In conclusion, let us consider a variety of grand questions for future research.

Statistical Features: Comparative Approaches

Given the high similarity between human vision and other ape visual systems (as well as 
monkey visual systems, and indeed those of most other mammals), we can ask whether 
nonhuman animals experience the same generalized preferences for image statistical fea­
tures such as natural scene-like power spectra. Our understanding of human visual aes­
thetics in the context of natural statistical regularities may tell us something about the 
“aesthetic primitives” that apply across many species. If other ape, primate, and mammal 
species show maximal preference and acuity for low-level natural scene-like regularities 
such as 1/f scaling, this would be strong evidence for the generality of the perceptibility 
hypothesis. As such, this finding would open new territory in the study of empirical aes­
thetics, since other species would be seen to operate on the same foundation of low-level 
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visual biases or preferences. Studies of luminance statistics, color statistics, and other 
features in nonhuman animals may be profitable for similar reasons.

Spatiotemporal Features in Real Environments

Given the unnaturalness of film cuts, researchers have made efforts toward understand­
ing more naturalistic aesthetic experiences that play out over time, such as museum visits 
(e.g., Pelowski et al., 2017). However, there is much yet to learn about how the statistics 
of spatiotemporal patterns of real-world visual stimulation relate to aesthetic experience. 
Indeed, as we go from considering single images to temporal sequences of images, the 
space of possible patterns of stimulation expands greatly. In relation to efficient coding of 
image statistical features, there is evidence that eye movements provide an important 
transformation of natural scenes (Kuang et al., 2012). However, accurately correlating 
eye movements in real environments to points of fixation in 3D space remains an un­
solved problem.

Deep Learning

A new frontier in image statistics has opened in the recent acceleration in research on 
computer vision and machine learning systems that employ “deep” artificial neural net­
works. Such “deep learning” networks (e.g., convolutional neural networks) are powerful 
because they can learn higher-order spatial regularities of an input class of images. In 
particular, such systems find regularities by learning a set of basic representational units 
(i.e., spatial filters) that efficiently characterize commonalities of image structure within 
that image class. Basic spatial features are learned in lower levels of the network, while 
higher (deeper) levels use supervised learning to make more abstract associations be­
tween those features and semantic or conceptual categories. For example, such systems 
can learn to distinguish the stylistic category or authorship of patches extracted from art­
works, and can match human performance on this task (see e.g., Gatys et al., 2016). It 
would not be inconceivable for such a system to learn to distinguish between aesthetic 
preferences of individual human observers, or to predict individual preference ratings in 
a given context.

However, the deep learning revolution has been countered by skeptics (e.g., Lake et al., 
2017) who argue that a given deep learning network’s performance is often poor when 
trained with a different set of images, applied to a different set of test images, or de­
ployed to a related but distinct task. It is also impossible to interrogate a deep learning 
model to understand how it achieves a particular result since its “knowledge” consists en­
tirely of thousands or millions of network weights, which together comprise a statistical 
model. That is, such models do not specify or describe mechanistic or functional relation­
ships among real-world variables.

Thus, deep learning models that learn an individual’s aesthetic taste might capture subtle 
higher-order idiosyncrasies in a particular set of images, and learn to associate these idio­
syncrasies with what the subject reports to be their preference for a given tested image. 

https://global.oup.com/privacy
https://www.oxfordhandbooks.com/page/legal-notice


The Use of Visual Statistical Features in Empirical Aesthetics

Page 24 of 30

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

Subscriber: Claremont University Consortium (Claremont Colleges); date: 19 August 2020

Deep learning might then be able to accurately predict the individual’s aesthetic judg­
ments of previously untested images from the same set. However, even highly accurate 
models of this kind would likely fail in a different but related task or context. In addition, 
such models do not contribute to explaining human aesthetic preferences or their neural 
underpinnings.

In contrast, what is powerful about considering natural regularities in image statistical 
features is that we can generate explanatory models—at least about constraints on aggre­
gate taste—which align with efficient neurobiological mechanisms in human vision.
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Notes:

(1.) Curiously, we perceive white noise images as having only high frequency structure, 
despite having equivalent amounts of low, medium, and high frequency structure.
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