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ABSTRACT
Understanding the factors that underlie human perception of
artistic style necessarily depends on measuring features be-
yond simple, low-order statistics. Indeed, much of our per-
ception of style is rooted in qualities of lines and shading
that cannot be described using first-order measures. In or-
der to provide a richer, more accurate description of human
perception of style, we must employ higher-order statistical
methods. We demonstrate the applicability of two types of
higher-order representations of images – and features derived
from these – to the problem of similarity-based image search
in large collections of art images. Our preliminary results
indicate that a combination of perceptual information and
statistical representations of art could prove extremely use-
ful in navigating large art image databases in the context of
similarity-based search.

1. INTRODUCTION

Increasingly, large collections of visual art are being digi-
tized and made available through the World Wide Web (see
e.g., www.googleartproject.com), both for enjoyment by the
general public and for analysis by the scientific community.
Of interest in such viewing experiences is the possibility of
navigating these large image spaces according to concepts
of visual similarity. This can be a challenging goal to ac-
complish, however, because of the complex statistical struc-
ture of visual art, which shares many basic statistical regu-
larities with natural scenes. For example, spatial frequency
amplitude spectra (second order statistics) in art images have
roughly the same 1/ f -shaped falloff found in natural scenes
[8, 9, 20].

Because low-level statistics are so widely shared across
art types (even abstract works typically have very similar am-
plitude spectrum slopes to those found in representational
works [9]), additional measures are needed to develop large-
scale systems for predicting similarity among paintings and
drawings in large collections of artworks. Such systems
would be of potential use for the applications mentioned
above, and we suggest that the principles guiding similarity
judgment in artwork will go a long way towards improving
content-based image retrieval systems more generally.

We argue that characterizing regularities in higher-order

statistics is a powerful approach to the problem of organiz-
ing large art databases according to stylistic similarity (and,
indeed, perceptual similarity). This suggestion is in line with
past work showing that machine learning algorithms trained
on higher-order spatial statistics are effective at performing
fine-grained stylometric1 distinctions [12]. It also aligns with
neuroscientific evidence that sparse statistical regularities [7]
shape neural coding strategies in the visual system [5, 6].
That is, tailoring a “dictionary” of stylistic features to the
higher-order redundancies found in art is akin to an organi-
zation schema of the receptive fields of visual neurons ac-
cording to higher-order statistical regularities in nature [17].

Put another way, we efficiently adapt our representation
to the higher order statistics of each image or image class,
rather than using a standard orthonormal representation. This
approach stands in contrast to the “kitchen sink” approach
employed by other researchers [21], wherein one or more
sets of features are chosen in an ad hoc way (e.g., RGB dis-
tributions, wavelet coefficients, face detection, etc.) to rep-
resent or describe a given image. While the latter approach
has made important progress related to the analysis of large
art databases – succeeding, for example, in separating art of
different eras (e.g., Gothic vs. Impressionist) – there may
be more principled ways to address the problems of quanti-
fying style and using this information for image search and
organization. Our approach, which includes making use of
representations that are optimized for each image, attempts
to provide a solution to these problems.

In addition, it remains to be seen whether style itself is
a quality that is defined primarily with respect to perceived
similarity as judged by lay viewers, historical or geographi-
cal provenance, or scholarly opinion. Psychological research
in this vein – comparing style judgments in computer mod-
els trained on higher-order redundancies, art experts, and lay
viewers – is underway. At present, though, there are but a
handful of quantitative studies of the factors that govern hu-
man style perception.

Here we describe experiments demonstrating the ef-
fectiveness of representations that capture the higher-order
statistics in a large, diverse collection of artworks. We com-

1“Stylometry” is a general term used to describe the development of
quantitative tools for the analysis and understanding of artistic style.



pare this approach to other representational methods such as
Gabor functions, as well as to approaches involving two-
point statistics. We find that these statistical measures pro-
duce clusterings that agree in large part with a “true” un-
derlying stylistic similarity between works of art, namely a
labeling of the works based on the artist who created them.
Further, we apply measures of higher-order redundancies to
three sets of paintings of varying content (abstract art, land-
scapes, and portraits). A comparison of the resulting stylo-
metric spaces to human judgements of similarity for the same
image sets shows that approaches to stylometry using higher-
order spatial regularities offer a promising route to capturing
similarities across large, diverse collections of artworks.

We provide strong initial evidence that stylometric mea-
sures using higher-order statistical regularities show corre-
spondences with perceived similarity. We believe that this
strongly suggests that systems that base judgements on hu-
man perceptual information, while at the same time taking
advantage of as much quantitative information as possible,
are likely to provide the best performance in navigating im-
age spaces using similarity-based search techniques.

2. IMAGES

The images we used were a collection of 308 high-resolution
art images obtain from various sources. Included are draw-
ings by Bruegel [19], paintings by Charlotte Caspers [3],
paintings by Georges Braque [16], drawings by Raymond
Pettibon [16], and a large collection of works spanning sev-
eral centuries obtained through the Cornell University collec-
tions [8, 9], among others. All images were uncompressed
TIFF or PNG images and were converted to grayscale via
Matlab’s rgb2gray function before analysis [15].

3. IMAGE FEATURES

We examine the efficacy of two types of methods – fixed and
adaptive – for providing descriptions of the stylistic qualities
of art images. Furthermore, we compare these methods to the
“expected” stylistic distinctions, as well as to psychophysi-
cal experiments that examined perceptual similarity between
works of art [10]. The two image decomposition methods
we utilize in this paper are a Gabor filter decomposition of
images [4] and the sparse coding model [17, 18]. Several
features are extracted from the decompositions obtained us-
ing each of these models and are described in more detail in
the corresponding sections.

Gabor filter decomposition
Gabor functions are localized, oriented, and bandpass, and as
such are sensitive to constructs of lines and edges at particu-
lar orientations and spatial frequencies. In our experiments,
we created a set of Gabor functions at eight orientations (0 to
7π

8 radians), four spatial frequencies (approximately 5,9,12,
and 16 cycles-per-picture), and two phases (0 and π radians),
for a total of 64 filters.

Once an image patch size (e.g., 64× 64 pixels) and fil-
ter size (e.g., 32× 32 pixels) were determined, we imposed
a grid on the images and extracted as many patches of the
specified size as possible. Each of these patches was con-
volved with the Gabor filters we created to generate a set of
64 filter responses. Generally, we let the filters have a side
length equal to one-half the side length of the image patches.

This allowed us to obtain a section of the convolution im-
age equal in size to the filter, disregarding parts of the image
where zero-padding would have been necessary.

Once the response images for each patch were obtained, a
feature vector was generated for each patch using the energy
contained in each filter response:

E(I, fk,θ ,φ ) = ∑
i
|( fk,θ ,φ ∗ I)[i]|2,

where I is the image patch and fk,θ ,φ is a Gabor filter with
preferred spatial frequency k, preferred orientation θ and
spatial phase φ , and i indexes pixels in the image patch.
Other features are of course possible, but for our purposes
here we considered only this method of feature extraction.
Distances between works of art were determined by the cor-
relation distance (i.e., 1−Pearson’s r) between the average
of the feature vectors associated with a particular image.

Sparse coding model
The sparse coding model of Olshausen & Field [17, 18],
which is equivalent to independent component analysis
(ICA) [1], was originally proposed to explain the response
properties of cortical “simple cells” in the early visual sys-
tem. The model learns a set of basis functions tuned to the
higher-order statistical characteristics of a particular image
space via maximum likelihood estimation. Since a sparse
prior is used on the coefficients for any particular representa-
tion, the model attempts to maximize sparseness while guar-
anteeing a suitable level of reconstruction (i.e., one with rel-
atively low reconstruction error).

For our purposes, we seek to take advantage of two im-
portant characteristics of this model: its sparseness, deter-
mined by non-Gaussian filter response distributions which
allow the learned functions to be non-orthogonal and (pos-
sibly) overcomplete, and its adaptiveness, which insures that
the learned functions are optimal with respect to the data.
Sparseness is critical so that the functions do not become
those that would be determined by a principal component
analysis [2] decomposition of the image space, since such
functions, which resemble the Fourier basis in two dimen-
sions [17] and thus contain no localized information, are usu-
ally tuned to a narrow range of spatial frequencies and are
generally not separable in terms of orientation and spatial
frequency. Adaptiveness is also key: in contrast to a fixed de-
composition such as a set of Gabor functions, the functions
learned by the sparse coding model are data-dependent, and
the variations in the properties of the functions themselves
should be reflective of the underlying inputs.

Because of their adaptiveness to the input image space,
we use the functions themselves as a proxy through which
to analyze properties of the higher-order statistical charac-
teristics of the images. Olshausen & Field showed that the
learned functions reflect properties of the input image space
[17]. We derive several features from the functions in order
to analyze and compare these properties. In all of our exper-
iments, we trained a set of 256 16×16 pixel basis functions
on each image individually using the sparse coding model. It
was from this set of functions that we derived features repre-
senting each image.

We compared images according to several metrics, which
depend on the features extracted from the basis functions.
They are as follows:



• Peak orientation: given the two-dimensional Fourier
transform of a basis function, at what orientation does
peak amplitude (or power) occur, averaged across all spa-
tial frequencies. This is a reliable way of determining the
orientation selectivity of a basis function.

• Peak spatial frequency: given the two-dimensional
Fourier transform of a basis function, at what spatial fre-
quency does peak amplitude (or power) occur, averaged
across all orientations. This is a reliable way of determin-
ing the spatial frequency selectivity of a basis function.

• Orientation bandwidth: given the two-dimensional
Fourier transform of a basis function, what is the
bandwidth in octaves (measured by full width at half-
maximum) of the function, averaged across all spatial
frequencies, centered around its peak orientation. This
quantity measures how selective a basis function is for
its preferred orientation.

• Spatial frequency bandwidth: given the two-dimensional
Fourier transform of a basis function, what is the
bandwidth in octaves (measured by full width at half-
maximum) of the function, averaged across all orienta-
tions, centered around its peak spatial frequency. This
quantity measures how selective a basis function is for
its preferred spatial frequency.

These quantities are computed for each of the 256 basis func-
tions trained for each image. Since there is no natural way to
compare individual functions with one another, we employ
distributional methods to do so. In particular, we use sym-
metrized KL divergence (KLD) to compare distributions of
these quantities, defined in the following way:

KLD(P,Q) =
1
2 ∑

ω∈Ω

[
P(ω) log

P(ω)
Q(ω)

+Q(ω) log
Q(ω)
P(ω)

]
.

Since the values above are continuous quantities, we estimate
KLD by binning, and we determine bins once for a particu-
lar quantity (e.g., spatial frequency bandwidth), and this de-
termines the binning for all subsequent computations of the
KLD. Thus, given the quantities above, we derive distances
between all images using KLD for the following distribu-
tions:
• Distribution of peak orientation
• Distribution of peak spatial frequency
• Joint distribution of peak orientation and spatial fre-

quency
• Distribution of orientation bandwidth
• Distribution of spatial frequency bandwidth
• Joint distribution of orientation and spatial frequency

bandwidth
Furthermore, we compute distances between images based
on a distance metric defined directly on the sets of basis func-
tions [13]. The final feature we compute, from which we de-
rive a distance, is the slope of the log rotational average of
the amplitude spectrum for each image [5]. Ultimately, in-
cluding Gabor filter energy, all of the distances derived from
the sparse coding model basis functions, and the slope of the
log rotational average of the amplitude spectrum, we have
in total ten distances with which we compare images in our
dataset. We include an eleventh, the distance matrix derived
by aggregating the distance matrices after rescaling each so
that the maximum distance was 1.

4. RESULTS

Our ultimate goal in this work is to provide a method for
quantitatively characterizing the style of a work of art, specif-
ically in such a way that allows us to easily compare a
given work with others and determine which are stylistically
most similar. Unfortunately, we do not at present possess
a “ground truth” notion of stylistic similarity for our entire
dataset. In order to compare the various derived metrics on
images, we chose to compare them according to the true artist
labeling of the images. For example, all paintings by Picasso
would have the same label. This rule was used consistently
except in one prominent case, the “non-Bruegel” category
of drawings, in which drawings were given the same label,
though they may be by different artists. This oversmoothing
was necessary since the attribution of many of the Bruegel
imitation images is not known; however, they are, like the
Bruegel drawings, fairly stylistically consistent, especially
with respect to the other works of art in the dataset.

In order to compare the information contained in the ten
distance matrices with the true artist labeling of the images,
we first embedded the drawings in Euclidean space via clas-
sical multidimensional scaling [11]. We then used the k-
means algorithm to determine a clustering of the points for
several values of k (shown in Figure 1). Once a clustering
was determined for the embedding of each distance matrix,
we compared that clustering with the true labeling using nor-
malized mutual information (NMI) [14]:

NMI(Ω,C) =
I(Ω,C)

[H(Ω)+H(C)]/2
,

where I is the mutual information between clustering Ω and
the true labeling C,

I(Ω,C) = ∑
k

∑
j

P(ωk ∩ c j) log
P(ωk ∩ c j)
P(ωk)P(c j)

,

and H is the entropy of each set of objects,

H(Ω) =−∑
k

P(ωk) logP(ωk).

Dividing by the average of the entropies ensures that this
quantity is between 0 and 1. Although this measure is not
a perfect means of quantifying the accuracy of a clustering
(which is difficult in a case where labels are not identifiable),
it does provide a reasonable means of estimating the infor-
mation overlap of two clusterings, and we believe that this is
an acceptable proxy for our purposes in these initial experi-
ments.

Figure 1 shows the value of NMI for clusterings obtained
via k-means clustering using each of the distance metrics
described above, for several values of k. As can be seen,
the best performance was obtained using the combined (i.e.,
aggregated) distance matrix, with the Euclidean distance-
based basis metric, Gabor filter energies, and joint orienta-
tion/spatial frequency bandwidth distributions also contain-
ing information that was consistent with the true labeling of
the images. The overall success of the combined distance
matrix suggests that incorporating statistical measures based
on fixed representations (such as Gabor filter energies and
the slope of the amplitude spectrum) as well as adaptive mea-
sures (like those that depend on basis functions learned via a
sparse coding model) is the most effective way to character-
ize stylistic properties in works of art.



Figure 1: Clustering normalized mutual information for the
308 images used in our experiments, clustered using the k-
means algorithm, across several values of k (indicated by
open circles on traces in plot). A maximum of 85 clusters
was chosen, since that corresponds to the number of unique
artist labels in the dataset. A perfect clustering would have
NMI of 1.

Comparison to perceptual experiments

In order to begin to evaluate the effectiveness of the derived
features at accounting for perceptual similarities between im-
ages, we compared our feature-based distances to those ob-
tained through psychophysical perceptual similarity experi-
ments [10]. In these experiments, participants were asked to
judge the similarity between pairs of art images (1-9 scale) in
three categories, abstract art, landscapes, and portraits (im-
ages were sorted in a prior three-alternative forced choice
test by a separate set of subjects). This information was ag-
gregated across all participants to create a similarity matrix
for each category. These experiments were extremely small
scale and dealt with approximately 20 images per category,
nevertheless, as we will demonstrate, the perceptual similari-
ties between works of art provide information that is effective
at categorizing images according to their style, at least at the
coarse artist-by-artist scale of our experiments.

The first experiment we performed was to compare the
effectiveness of the perceptual judgements at predicting the
stylistic relationship between works of art. We accomplished
this by holding out two images from each of the three sets of
images. We then trained a regression model on the percep-
tual distances using the feature-based distances as regressors,
except for the aggregated distance matrix (in our model, we
include constant, linear, and quadratic terms). Using regres-
sion in this manner, we should be able to predict the relation-
ship between two images, according to the perceived simi-
larity between them, assuming the perceptual model contains
useful information that will be predictive for the held-out im-
ages. We computed predictor weights in a regression model
500 times for each image category, holding out two different
images at random each time. After each model was learned,
we predicted the distances between the held-out images and
all images used in training. We then selected one of these

at random and compared the true perceptual distance rela-
tionship between the images to the relationship between the
predicted distances. Accuracy and statistical significance of
these results is shown in Table 1.

Category Accuracy p-value
Abstract art 0.61 5×10−7

Landscapes 0.62 1×10−8

Portraits 0.51 0.28

Table 1: Accuracy of model at predicting relationship of
held-out images to randomly selected image in training set.
High accuracy implies that the correct relationship between
the test images (e.g., image 1 was closer to target image T
than image 2 was) was predicted by the model. Accuracy is
given by the fraction of correct predictions (out of 500 tests).
The right column shows p-values indicating the significance
level of these tests, assuming a binomial model in which the
correct relationship would be guessed at random (i.e., by flip-
ping a fair coin).

These results indicate that perceptual information from
two of the three categories (abstract art and landscapes) con-
tained information that allowed prediction at a statistically
significant level. This not only confirms the existence of
useful information in the perceptual similarity data, but also
the ability of the statistical information to effectively model
these distinctions. Nevertheless, the number of images used
in these experiments was extremely limited, and in order to
generalize these results, further experiments are required.

We also explored the extent to which the admittedly lim-
ited perceptual information we possessed about the three cat-
egories of images could be predictive of stylistic distinctions
in larger sets of images. This application is of particular im-
portance to similarity-based image search, since its success
implies that limited subsets of perceptual similarity informa-
tion between images could be used to “bootstrap” models
used to predict similarity between very large sets of images.

Prediction of perceptual distances between images in our
dataset was accomplished by first modeling the perceptual
distances in the three image categories using the feature-
based scores, as before, but this time without holding out
any images. Once a model was obtained, we averaged the
the predictor coefficients from each of the three models and
used this to predict the “perceptual distance” between im-
ages. Note that, in these experiments, we did not predict
distances for the images that were included in the original
perceptual experiments (i.e., those in the abstract, landscape,
and portrait categories). These images were held-out during
the prediction phase and did not factor into the subsequent
analysis.

We held out 51 images (across the three categories) and
created a predicted perceptual distance matrix on the remain-
ing 257 images. We compared this with the same distance
measures used above by using only the submatrices that con-
tained these 257 works in each of the 11 original matrices.
As before, we found a Euclidean embedding of the images
using each distance matrix and then performed k-means clus-
tering for several values of k, then compared these clusterings
with the corresponding true labeling. The results are shown
in Figure 2. Not surprisingly, the aggregate distance matrix
still yields clusterings with the closest relationship to the true



Figure 2: Clustering normalized mutual information for 257
images used to compare clusterings between distance mea-
sures and predicted perceptual distances, clustered using the
k-means algorithm, across several values of k (indicated by
open circles on traces in plot). A perfect clustering would
have NMI of 1.

labeling. However, the predicted distance matrix has perfor-
mance on par with any other individual feature, suggesting
that, although our sample of perceptual distances was ex-
tremely limited, this information can guide the ways in which
we combine statistical features to understand style percep-
tion.

5. CONCLUSIONS

Although preliminary, our results indicate not only that mea-
surement of higher-order statistical characteristics of images
generates information germane to stylistic distinctions, but
also that combining this information with perceptual simi-
larity can create an effective, statistical means of organiz-
ing images and predicting perceptual similarity in the context
of similarity-based search in large image databases. Future
work will include implementation of such a system and fur-
ther analysis of the concepts presented here.
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