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1 Introduction and History 3

Abstract
This document is an introduction to the use of the point-centered quarter method. It briefly outlines

its history, its methodology, and some of the practical issues (and modifications) that inevitably arise
with its use in the field. Additionally this paper shows how data collected using point-centered quarter
method sampling may be used to determine importance values of different species of trees and describes
and derives several methods of estimating plant density and corresponding confidence intervals.

New to this version is a revision of Appendix D which now includes R Shiny Apps to carry out many
of these calculations. References to data sets in the previous version that are no longer publicly available
have been removed. These have been replaced with examples and exercises which demonstrate the use of
the R Shiny Apps and the earlier R scripts.

Two additional comments are in order. First, this document was originally created for student use in
an ecology course. In parts, it retains that flavor with instructions for the neophyte, copious examples, and
exercises. Second, this document is better suited for reading online where the extensive links throughout
it may be accessed.

1 Introduction and History

A wide variety of methods have been used to study forest structure parameters such as population density,
basal area, and biomass. While these are sometimes estimated using aerial surveys or photographs, most
studies involve measurement of these characteristics for individual trees using a number of different sampling
methods. These methods fall into two broad categories: plot-based and plotless. Plot-based methods begin
with one or more plots (quadrats, belts) of known area in which the characteristics of interest are measured for
each plant. In contrast, plotless methods involve measuring distances for a random sample of trees, typically
along a transect, and recording the characteristics of interest for this sample. The point-centered quarter
method is one such plotless method.

The advantage to using plotless methods rather than standard plot-based techniques is that they tend to be
more efficient. Plotless methods are faster, require less equipment, and may require fewer workers. However,
the main advantage is speed. The question, then, is whether accuracy is sacrificed in the process.

Stearns (1949) indicated that the point-centered quarter method dates back at least 150 years and was used
by surveyors in the mid-nineteenth century making the first surveys of government land. In the late 1940s
and early 1950s, several articles appeared that described a variety of plotless methods and compared them to
sampling by quadrats. In particular, Cottam et al. (1953) compared the point-centered quarter method to
quadrat sampling and derived empirically a formula that could be used to estimate population density from
the distance data collected. Since the current paper is intended as an introduction to these methods, it is
worth reminding ourselves what the goal of these methods is by recalling part of the introduction to their
paper:

As our knowledge of plant communities increases, greater emphasis is being placed on the methods
used to measure the characteristics of these communities. Succeeding decades have shown a trend
toward the use of quantitative methods, with purely descriptive methods becoming less common.
One reason for the use of quantitative techniques is that the resulting data are not tinged by the
subjective bias of the investigator. The results are presumed to represent the vegetation as it
actually exists; any other investigator should be able to employ the same methods in the same
communities and secure approximately the same data.

Under the assumption that trees are distributed randomly throughout the survey site, Morisita (1954)
provided a mathematical proof for the formula that Cottam et al. (1953) had derived empirically for the
estimation of population density using the point-centered quarter method. In other words, the point-centered
quarter method could, in fact, be used to obtain accurate estimates of population densities with the advantage
that the point-centered quarter method data could be collected more quickly than quadrat data. Subsequently,
Cottam and Curtis (1956) provided a more detailed comparison of the point-centered quarter method and
three other plotless methods (the closest individual, the nearest neighbor, and the random pairs methods).
Their conclusion was:

The quarter method gives the least variable results for distance determinations, provides more
data per sampling point, and is the least susceptible to subjective bias. . .
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2 Materials and Methods 4

It is the opinion of the authors that the quarter method is, in most respects, superior to the other
distance methods studied, and its use is recommended.

Beasom and Haucke (1975) compared the same four plotless methods and also concluded that point-centered
quarter method provides the most accurate estimate of density. In a comparison of a more diverse set of
methods Engeman et al. (1994) have a more nuanced opinion of whether the point-centered quarter method is
more efficient in the field and more accurate in its density estimates, especially in situations where individuals
are not distributed randomly.

In recent years, as the point-centered quarter method has been used more widely, variations have been
proposed by Dahdouh-Guebas and Koedam (2006) to address a number of practical problems that arise in
the field (multi-stem trees, quarters where no trees are immediately present).

One use of the point-centered quarter method is to determine the relative importance of the various tree
species in a community. The term “importance” can mean many things depending on the context. An
obvious factor influencing the importance of a species to a community is the number of trees present of that
species. However, the importance of some number of small trees is not the same as the importance of the
same number of large trees. So the size of the trees also plays a role. Further, how the trees are distributed
throughout the community also has an effect. A number of trees of the same species clumped together should
have a different importance value than the same number of trees distributed more evenly throughout the
community.

Measuring importance can aid understanding the successional stages of a forest habitat. At different stages,
different species of trees will dominate. Importance values are one objective way of measuring this dominance.

The three factors that we will use to determine the importance value of a species are the density, the size,
and the frequency (distribution). Ideally, to estimate these factors, one would take a large sample, measuring,
say, all the trees in a 100× 100 meter square (a hectare). This can be extraordinarily time consuming if the
trees are very dense. The point-centered quarter method provides a quick way to make such estimates by
using a series of measurements along a transect.

2 Materials and Methods

The procedure outlined below describes how to carry out point-centered quarter method data collection along
a 100 m transect. It can be scaled up or down, as appropriate, for longer or shorter transects. While this
analysis can be carried out alone, groups of two or three can make for very efficient data collection. Material
requirements include a 50 or 100 meter tape, a shorter 5 or 10 meter tape, a notebook, a calculator, tablet, or
smartphone, and a table of random numbers such as this one at NIST, if your device cannot generate them.

1. Generate a list of 15 to 20 random two-digit numbers. If the difference of any two is 4 or less, cross out
the second listed number. There should be 10 or more two-digit numbers remaining; if not, generate
additional ones. List the first 10 remaining numbers in increasing order. It is important to generate
this list before doing any measurements.

2. Lay out a 100 m transect or longer as needed. Multiple transects may be required to survey large areas.

3. The random numbers represent the distances along the transect at which data will be collected. Random
numbers are used to eliminate bias. Everyone always wants to measure that BIG tree along the transect,
but such trees may not be representative of the community.1 Points are at least 5 meters apart to
ensure that the same trees will not be measured repeatedly. Caution: If trees are particularly sparse,
both the length of the transect and the minimum distance between points may need to be increased.

4. The smallest random number determines the first sampling point along the transect. At this and every
sampling point, run an imaginary line perpendicular to the transect. This line and the transect divide
the world into four quarters, hence the name, point-centered quarter method.

1Even Cottam and Curtis (1956) warn us about this tendency: “Repeated sampling of the same stand with different
investigators indicates that some individuals have a tendency to place the sampling points so that large or unusual trees occur
more commonly than they occur in the stand.”
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2 Materials and Methods 5

5. Select one of the quarters. In that quarter, locate the tree nearest to the sampling point. For the
purposes of this exercise, to be counted as a “tree” it should have a minimum diameter of 4 cm or,
equivalently, a minimum circumference of 12.5 cm. Caution: In other situations, different minimum
values may be appropriate.
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FIGURE 1. Sample points along a transect with the nearest
trees in each quarter indicated by · · · · · · .

For each sampling point, record:

(a) the quarter number (I, II, III, or IV) or other designation (e.g., NE, NW, SE, SW);

(b) the distance from the sampling point to the center of the trunk of the tree, measured to the nearest
0.1 m (Caution: Review Appendix A on the 30–300 Rule.);

(c) the species of the tree;

(d) and the diameter at breast height (DBH) or circumference at chest height (CCH) to the nearest
centimeter, but again observe the 30–300 Rule.

Note: Brokaw and Thompson (2000) have shown that it is important to use the same height
to measure the diameter or circumference. They suggest using a standard height of 130 cm and
employing the notation D130 rather than DBH to indicate this. Whatever height is used should be
explicitly noted in the results.

Note: Tree calipers are an easy way to measure diameters, but are often unavailable. It may be
more convenient to measure the girth (circumference) of each tree instead of the diameter.

Cautions: If a tape is used to measure DBH, avoid protrusions on the trunk. If calipers are used,
an average from three caliper readings is recorded. If girths are recorded, rather than convert each
girth to a diameter, change the column heading from DBH to CCH. Make the appropriate scaling
adjustment in later calculations, whenever diameters are involved.

See Table 1 for how this data should be organized. Repeat this for the other three quarters at this
sampling point. If a tree species cannot be identified, simply record it as A, B, C, etc., and collect and
label a sample leaf that for comparison purposes at other quarters and later taxonomic identification.

6. Repeat this process for the entire set of sampling points.

7. Carry out the data analysis as described below.

For trees with multiple trunks at breast height, record the diameter (circumference) of each trunk separately.
What is the minimum allowed diameter of each trunk in a such multi-trunk tree? Such decisions should
be spelled out in the methods section of the resulting report. At a minimum, one should ensure that the
combined cross-sectional areas of all trunks meet the previously established minimum cross-sectional area
for a single trunk tree. For example, with a 4 cm minimum diameter for a single trunk, the minimum
cross-sectional area is

πr2 = π(2)2 = 4π ≈ 12.6 cm2.
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4 Basic Analysis 6

3 Data Organization and Notation

The Data Layout. Table 1 illustrates how the data should be organized for the point-centered quarter
method analysis. Note the multi-trunk Acacia (8 cm, 6 cm; D130) in the third quarter at the second sampling
point. The only calculation required at this stage is to sum the distances from the sample points to each of
the trees that was measured. Note: A sample of only five points as in Table 1 is too few for most studies.
These data are presented only to illustrate the method of analysis in a concise way.

TABLE 1. Field data organized for point-centered quarter method analysis.

Sampling Point Quarter No. Species Distance (m) D130 (cm)

1 1 Acacia 1.1 6
2 Eucalyptus 1.6 48
3 Casuarina 2.3 15
4 Callitris 3.0 11

2 1 Eucalyptus 2.8 65
2 Casuarina 3.7 16
3 Acacia 0.9 8, 6
4 Casuarina 2.2 9

3 1 Acacia 2.8 4
2 Acacia 1.1 6
3 Acacia 3.2 6
4 Acacia 1.4 5

4 1 Callitris 1.3 19
2 Casuarina 0.8 22
3 Casuarina 0.7 12
4 Callitris 3.1 7

5 1 Acacia 1.5 7
2 Acacia 2.4 5
3 Eucalyptus 3.3 27
4 Eucalyptus 1.7 36

Total 40.9

Notation. We will use the following notation throughout this paper.
n the number of sample points along the transect
4n the number of samples or observations, one for each quarter at each point
i a particular transect point, where i = 1, . . . , n
j a quarter at a transect point, where j = 1, . . . , 4
Rij the point-to-tree distance at point i in quarter j

For example, the sum of the distances in the Table 1 is
5∑
i=1

4∑
j=1

Rij = 40.9.

4 Basic Analysis

The next three subsections outline the estimation of density, frequency, and cover. The most widely studied
of the three is density. In Section 5 we present a more robust way to determine both a point estimate and a
confidence interval for population density. See Appendix D for apps to quickly carry out all these calculations.
In this section density, frequency, and cover are defined both in absolute and relative terms. The relative
measures are then combined to create a measure of importance.
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4 Basic Analysis 7

Density

Absolute Density

The absolute density λ of trees is defined as the number of trees per unit area. Since λ is most easily
estimated per square meter and since a hectare is 10,000 m2, λ is often multiplied by 10,000 to express the
number of tree per hectare. The distances measured using the point-centered quarter method may be used to
estimate λ to avoid having to count every tree within such a large area.

Note that if λ is given as trees/m2, then its reciprocal 1/λ is the mean area occupied by a single tree. This
observation is the basis for the following estimate of λ. (Also see Section 5.)

From the transect information, determine the mean distance r̄, which is the sum of the nearest point-to-tree
distances in the quarters surveyed divided by the number of quarters,

r̄ =
∑n
i=1
∑4
j=1 Rij

4n .

For the data in Table 1,
r̄ = 40.9

20 = 2.05 m.

Cottam et al. (1953) showed empirically and Morisita (1954) demonstrated mathematically that r̄ is actually
an estimate of

√
1/λ, the square root of the mean area occupied by a single tree. Consequently, an estimate

of the density is given by

Absolute density = λ̂ = 1
r̄2 = 16n2(∑n

i=1
∑4
j=1 Rij

)2 . (1)

For the data in Table 1,
λ̂ = 1

r̄2 = 1
2.052 = 0.2380 trees/m2

,

or, equivalently, 2380 trees/ha.
One way to “see” this is to imagine a “for-
est” where the trees are uniformly distributed
on a square grid whose sides are r̄ = 2.05 m
long. If a tree is located at the center of each
square in this forest, then the mean distance
r̄ between trees is 2.05 m. Such a forest (or-
chard) is illustrated in Figure 2. Each tree
occupies a square of side 2.05 m, and so the
density is 1/2.052 = 0.2380 trees/m2. Though
such a uniform arrangement of trees violates
the assumption of randomness, the figure does
illustrate what is happening “on average” or
in the mean. (See Appendix B for a careful
derivation of this estimate.)
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FIGURE 2. A grid-like forest with trees uniformly dispersed so
that the nearest neighbor is 2.05 m.

Absolute Density of Each Species

The absolute density of an individual species is the expected number of trees of that species per square meter
(or hectare). The absolute density λk of species k is estimated as the proportion of quarters in which
the species is found times the estimated absolute density of all trees.

λ̂k = Quarters with species k
4n × λ̂. (2)

Table 2 gives the absolute density for each species in Table 1.
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4 Basic Analysis 8

TABLE 2. The absolute density of each species.

Species Frequency/Quarter Trees/ha

Acacia 8/20 = 0.40 0.40 × 2380 = 952
Eucalyptus 4/20 = 0.20 0.20 × 2380 = 476
Casuarina 5/20 = 0.25 0.25 × 2380 = 595
Callitris 3/20 = 0.15 0.15 × 2380 = 357

Total 2380

Relative Density of a Species

The relative density of each species is the percentage of the total number observations of that species,

Relative density (Species k) = λ̂k

λ̂
× 100.

Equivalently by making use of (2), we may define

Relative density (Species k) = Quarters with species k
4n × 100. (3)

In the current example, using the first definition, the relative density of a species can be found by making use
of the data in column 3 of Table 2. For example,

Relative density of Eucalyptus = 476
2380 × 100 = 20.0.

Using the alternative method in (3) as a check on earlier calculations we see that the relative density is just
the proportion in column 2 of Table 2 times 100. For example,

Relative density of Eucalyptus = 4
20 × 100 = 20.0.

The relative densities should sum to 100 plus or minus a tiny round-off error.

TABLE 3. The relative density of each species.

Species Relative Density

Acacia 40.0
Eucalyptus 20.0
Casuarina 25.0
Callitris 15.0

Based on simulations, Cottam et al. (1953) suggest that about 30 individuals of a particular species must be
present in the total sample before confidence can placed in any statements about relative frequency.

Cover or Dominance of a Species

Absolute Cover

The cover or dominance of an individual tree is measured by its basal area or cross-sectional area. Let d, r,
c, and A denote the diameter, radius, circumference, and basal area of a tree, respectively. Since the area
of a circle is A = πr2, it is also A = π(d/2)2 = πd2/4. Since the circumference is c = 2πr, then the area is
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4 Basic Analysis 9

also A = c2/4π. Either A = πd2/4 or A = c2/4π can be used to determine basal area, depending on whether
DBH (D130) or CCH was recorded in Table 1.

The first step is to compute the basal area for each tree sampled, organizing the data by species. This is the
most tedious part of the analysis. A calculator that can handle lists of data or a spreadsheet with its sort
function can be very handy at this stages (see Appendix D). For the data in Table 1, the basal area for each
tree was obtained using the formula A = πd2/4. For trees with multiple trunks, the basal area for each trunk
was computed separately and the results summed (see Acacia in Table 4).

TABLE 4. The basal area of each tree.

Acacia Eucalyptus Casuarina Callitris Total
D130 Area D130 Area D130 Area D130 Area
(cm) (cm2) (cm) (cm2) (cm) (cm2) (cm) (cm2)

6 28.3 48 1809.6 15 176.7 11 95.0
8, 6 78.5 65 3318.3 16 201.1 19 283.5
4 12.6 27 572.6 9 63.6 7 38.5
6 28.3 36 1017.9 22 380.1
6 28.3 12 113.1
5 19.6
7 38.5
5 19.6

Total BA 253.7 6718.4 934.6 417.0 8323.7
Mean BA 31.71 1679.60 186.92 139.00 416.19

Next, determine the total cover or basal area of the trees in the sample by species, and then calculate the
mean basal area for each species.2
Be careful when computing the means as the number of trees for each species will differ. Remember that
each multi-trunk tree counts as a single tree.

The absolute cover or dominance of each species is expressed as its basal area
per hectare. This is obtained by taking the number of trees per species from Table 2 and multiplying by
the corresponding mean basal area in Table 4. The units for cover are m2/ha (not cm2/ha), so a conversion
factor is required. For Acacia,

Absolute Cover (Acacia) = 31.71 cm2 × 952
ha ×

1 m2

10, 000 cm2 = 3.0 m2

ha .

TABLE 5. The total basal area of each species.

Species Mean BA Number/ha Total BA/ha
(cm2) (m2/ha)

Acacia 31.71 952 3.0
Eucalyptus 1679.60 476 79.9
Casuarina 186.92 595 11.1
Callitris 139.00 357 5.0

Total Cover/ha 99.0

Finally, calculate the total cover per hectare by summing the per species covers.
2Note: Mean basal area cannot be calculated by finding the mean diameter for each species and then using the formula

A = πd2/4.
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4 Basic Analysis 10

Relative Cover (Relative Dominance) of a Species

The relative cover or relative dominance [see Cottam and Curtis (1956)] for a particular species is
defined to be the absolute cover for that species divided by the total cover times 100 to express the result as
a percentage. For example, for Eucalyptus,

Relative cover (Eucalyptus) = 79.9 m2/ha
99.0 m2/ha × 100 = 80.7.

The relative covers should sum to 100 plus or minus a tiny round-off error. Note that the relative cover can
also be calculated directly from the transect information in Table 4.

Relative cover (Species k) = Total BA of species k along transect
Total BA of all species along transect × 100. (4)

For example,

Relative cover (Eucalyptus) = 6718.4 cm2

8323.7 cm2 × 100 = 80.7.

TABLE 6. The relative cover of each species.

Species Relative Cover

Acacia 3.0
Eucalyptus 80.7
Casuarina 11.2
Callitris 5.1

The Frequency of a Species

Absolute Frequency of a Species

The absolute frequency of a species is the percentage of sample points at which a species occurs. Higher
absolute frequencies indicate a more uniform distribution of a species while lower values may indicate clustering
or clumping. It is defined as

Absolute frequency = No. of sample points with a species
Total number of sample points × 100. (5)

For example,
Absolute frequency (Acacia) = 4

5 × 100 = 80%.

Note that absolute frequency is based on the number of sample points, not the number of quarters!

TABLE 7. The absolute frequency of each species.

Species Absolute Frequency

Acacia (4/5) × 100 = 80
Eucalyptus (3/5) × 100 = 60
Casuarina (3/5) × 100 = 60
Callitris (2/5) × 100 = 40

Total 240

Note that the total will sum to more than 100%.
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Relative Frequency of a Species

To normalize for the fact that the absolute frequencies sum to more than 100%, the relative frequency is
computed. It is defined as

Relative frequency = Absolute frequency of a species
Total frequency of all species × 100. (6)

For example,
Relative frequency (Acacia) = 80

240 × 100 = 33.3.

The relative frequencies should sum to 100 plus or minus a tiny round-off error.

TABLE 8. The relative frequency of each species.

Species Relative Frequency

Acacia 33.3
Eucalyptus 25.0
Casuarina 25.0
Callitris 16.7

What is the difference between relative frequency and relative density? A high relative frequency indicates that
the species occurs near relatively many different sampling points, in other words, the species is well-distributed
along the transect. A high relative density indicates that the species appears in a relatively large number of
quarters. Consequently, if the relative density is high and the relative frequency is low, then the species must
appear in lots of quarters but only at a few points, that is, the species appears in clumps. If both are high,
the distribution is relatively even and relatively common along the transect. If the relative density is low
(appears in few quarters) and the relative frequency is high(er), then the species must be sparsely distributed
(few plants, no clumping).

The Importance Value of a Species

The importance value of a species is defined as the sum of the three relative measures:

Importance value = Relative density + Relative cover + Relative frequency. (7)

The importance value gives equal weight to the three factors of relative density, cover, and frequency. This
means that small trees (that is, with small basal area) can be dominant only if there are enough of them
widely distributed across the transect. The importance value can range from 0 to 300.

For the data in Table 1, even though eucalypti are not very common, because of their size they turn out to
be the most important species within the community. Because the importance values sum to 300, to make
comparisons easier, many researchers choose to report the relative importance, which is just the importance
value divided by 3. See Table 9.

TABLE 9. The importance value of each species in Table 1.

Species Relative Density Relative Cover Relative Frequency Importance Relative Importance

Acacia 40.0 3.0 33.3 76.3 25.4
Eucalyptus 20.0 80.7 25.0 125.7 41.9
Casuarina 25.0 11.2 25.0 61.2 20.4
Callitris 15.0 5.1 16.7 36.8 12.3

EXERCISE 4.1. Look ahead to the data from Mueller-Dombois and Ellenberg (1974) in Example D.4. Calculate the
importance value of each species by hand and verify that the results given there are correct.
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5 Population Density Reconsidered 12

Comment. Each of the measures that make up relative importance may be calculated without knowing
the absolute density of the trees at the site [review (3), (4), and (6)]. In fact, any estimate for the absolute
density of all species leads to the same relative densities for each species. Consequently, the actual value
of density of the plot is not needed to determine relative importance. However, in most studies, absolute
density is one of the parameters of greatest interest. Because of this, there have been a number of different
methods to estimate absolute density from point-centered quarter method data proposed in the literature. In
the next section we explore one of these and others are discussed in Appendix B. Whichever method is used,
relative importance is unaffected.

Pollard (1971) showed that the estimate of Cottam and Curtis (1956) of λ in (1) is biased.3 Nonetheless, this
estimate appears widely in the literature and, so, has been used here. Another drawback of the estimate in
(1) is that no confidence limits are available for it. We now address both of these issues.

5 Population Density Reconsidered

Pollard (1971) and Seber (1982) derived an unbiased estimate of the absolute population density using
point-centered quarter method data that we now present. It also has the advantage that it can be used to
determine confidence intervals for the density.

Intuition

The discussion that follows is meant to inform our intuition and by no means constitutes a proof of any of
the results. That would require a substantially more sophisticated argument (see Appendix B).

Assume that trees are randomly distributed in the survey area. Think of the random points along the transect
as representing “virtual trees.” The measured distance Rij is a nearest-neighbor distance from a virtual to a
real tree and is an estimate of the actual mean nearest-neighbor tree-to-tree distance.

If an actual tree-to-tree distance were r meters, we could
draw circles of radius r/2 centered at each tree. See
Figure 3. Notice that the circles would not overlap and
that only one tree would lie in each circle.
The area of each circle is π(r/2)2 = πr2/4 m2. Since
there is exactly 1 tree per circle and since the circles
don’t overlap, the density is 1 tree per πr2/4 m2, or
equivalently,

4
πr2 trees/m2.
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FIGURE 3. When trees are
r units apart, circles of radius
r/2 centered at each tree do
not overlap and only one tree
would lie within each circle.

The observed point-to-tree distances Rij are the estimates of the actual distances. So π(Rij/2)2 = πR2
ij/4 m2

is an estimate of the sample mean area of a circle occupied by an individual. Using the 4n area estimates
along the transect, an unbiased estimate of the mean area occupied by an individual is∑n

i=1
∑4
j=1

πR2
ij

4
4n− 1 =

π
∑n
i=1
∑4
j=1 R

2
ij

4(4n− 1) .

Note: For this estimate to be unbiased, the denominator is one less than the actual number of observations,
that is, 4n− 1. The density is the reciprocal of the mean circular area.
FORMULA 5.1. An unbiased estimate of the population density λ is given by

λ̂ = 4(4n− 1)
π
∑n

i=1

∑4
j=1 R

2
ij

,

3Pollard (1971) states that the reason for this is Cottam and Curtis (1956) chose to estimate the mean area A occupied by a
tree as the reciprocal of λ. Rather then estimate A directly, as we saw in (1) they estimated r̄, which is the reciprocal of the
square root of A. Squaring and inverting leads to a biased estimate of A.
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5 Population Density Reconsidered 13

where the units are typically items/m2. Multiplying by 10, 000 yields trees/ha. The variance is given by

Var(λ̂) = λ̂2

4n− 2 .

EXAMPLE 5.1. Reanalyze the data in Table 1 by calculating λ̂ using Formula 5.1.
SOLUTION. First we determine

n∑
i=1

4∑
j=1

R2
ij = (1.1)2 + (1.6)2 + · · ·+ (1.7)2 = 100.71.

Unlike in (1), remember to square the distances first, then sum. The density estimate is

10, 000λ̂ = 10, 000 · 4(4n− 1)
π
∑n

i=1

∑4
j=1 R

2
ij

= 10, 000(4(20− 1))
100.71π = 2402trees/ha.

This estimate is about 1% higher than the earlier biased estimate of 2380.

Confidence Intervals

For larger samples, approximate confidence interval estimates for λ may be calculated in the following way.
For details and for an exact confidence interval, see Appendix B. For an R script to compute an exact
confidence interval see Appendix D.
FORMULA 5.2. For n > 7, the endpoints of a confidence interval at the (1− α)100% level are determined by

lower endpoint: C1 =
(
zα

2
+
√

16n− 1
)2

π
∑n

i=1

∑4
j=1 R

2
ij

and

upper endpoint: C2 =
(
z1−α2 +

√
16n− 1

)2
π
∑n

i=1

∑4
j=1 R

2
ij

,

where zβ is the standard normal z-score corresponding to probability β.

EXAMPLE 5.2. The data in Table 10 were collected at Lamington National
Park in 1994. The data are the nearest point-to-tree distances for each of four
quarters at 15 points along a 200 meter transect. The measurements are in
meters. Estimate the tree density and find a 95% confidence interval for the
density.
SOLUTION. In this example, the number of points is n = 15 and the number
of samples is 4n = 60. Using Formula 5.1, the point estimate for the density is

λ̂ = 4(4n− 1)

π

n∑
i=1

4∑
j=1

R2
ij

= 4(59)
347.63π = 0.2161 trees/m2.

Since the number of points is greater than 7, confidence intervals may be
calculated using Formula 5.2. To find a 1− α = 0.95 confidence interval, we
have α = 0.05 and so z1−α2 = z0.975 = 1.96 and z0.025 = −z0.975 = −1.96. The
lower endpoint of the confidence interval is

C1 =
(
z0.025 +

√
16n− 1

)2
π
∑n

i=1

∑4
j=1 R

2
ij

=

(
−1.96 +

√
16(15)− 1

)2

347.63π = 0.1669

TABLE 10. Data collected at Lam-
ington National Park in 1994.

Point I II III IV

1 1.5 1.2 2.3 1.9
2 3.3 0.7 2.5 2.0
3 3.3 2.3 2.3 2.4
4 1.8 3.4 1.0 4.3
5 0.9 0.9 2.9 1.4
6 2.0 1.3 1.0 0.7
7 0.7 2.0 2.7 2.5
8 2.6 4.8 1.1 1.2
9 1.0 2.5 1.9 1.1
10 1.6 0.7 3.4 3.2
11 1.8 1.0 1.4 3.6
12 4.2 0.6 3.2 2.6
13 4.1 3.9 0.2 2.0
14 1.7 4.2 4.0 1.1
15 1.8 2.2 1.2 2.8
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and the upper endpoint is

C2 =
(
z0.975 +

√
16n− 1

)2
π
∑n

i=1

∑4
j=1 R

2
ij

=

(
1.96 +

√
16(15)− 1

)2

347.63π = 0.2778.

Therefore, the confidence interval for the density is (0.1669, 0.2778) trees/m2. The units are changed to hectares by
multiplying by 10, 000. Thus, λ̂ = 2161 trees/ha while the confidence interval is (1669, 2778) trees/ha.

Cautions

The estimates and confidence intervals for density assume that the points along the transect are spread out
sufficiently so that no individual is sampled in more than one quarter. Further, the density estimate assumes
that the spatial distribution of the organisms is completely random. For example, it would be inappropriate
to use these methods in an orchard or woodlot where the trees had been planted in rows.

EXERCISE 5.1. The following data were collected in interior Alaska by Hollingsworth (2005). The data are the
nearest point-to-tree distances in meters for each of four quarters at the first 25 points of 724 sample points. All trees
were black spruce, Picea mariana. Estimate the tree density and find a 95% confidence interval. [Answer: λ̂ = 7037
trees/ha with a 95% confidence interval of (5768, 8551).]

Point I II III IV Point I II III IV

1 7.7 2.2 1.4 1.6 14 1.2 1.1 1.0 1.4
2 0.97 1.2 1.4 1.5 15 0.5 0.7 0.9 1.1
3 1.4 1.4 1.8 1.6 16 0.52 0.85 0.82 2.1
4 1.7 2.5 2.2 1.8 17 0.51 0.46 1.6 1.1
5 0.77 1.2 1.0 1.2 18 0.46 0.9 1.7 0.65
6 0.38 0.64 1.84 1.7 19 0.35 0.64 0.98 0.53
7 0.45 0.6 0.55 0.62 20 0.98 1.3 2.1 1.6
8 0.15 0.14 0.96 0.9 21 0.35 0.5 0.25 1.0
9 0.39 0.5 0.57 0.88 22 0.4 0.4 0.6 0.8
10 0.72 0.73 0.45 0.75 23 0.6 1.5 1.3 1.1
11 0.35 1.1 0.45 1.1 24 0.4 0.5 0.9 0.8
12 0.55 0.9 0.65 0.9 25 0.5 1.1 2.1 1.1
13 0.8 0.7 0.8 0.9

EXERCISE 5.2. The following data were collected at Lamington National Park in 1994 by another group of students.
The data are the nearest point-to-tree distances (m) for each of four quarters at 14 points along a 200 meter transect.
Estimate the tree density and find a 95% confidence interval. [Answer: λ̂ = 1382 trees/ha with a 95% confidence
interval of (1057, 1792).]

I II III IV I II III IV

0.6 1.4 3.6 2.0 3.4 3.4 2.9 2.6
0.6 0.9 3.2 1.8 1.7 3.2 2.7 4.2
2.0 3.9 1.8 2.2 3.8 4.2 3.2 4.4
4.1 7.0 1.6 4.0 1.8 1.1 4.3 3.4
3.2 2.0 1.0 3.8 2.8 0.9 2.7 2.3
2.8 3.3 1.3 0.8 1.4 5.0 4.5 2.7
3.1 1.9 2.9 3.4 2.0 0.2 3.0 4.0

6 Modifications, Adaptations, and Applications

In Section 1, we indicated that the point-centered quarter method is both efficient and accurate. However, as
Díaz et al. (1975) note, in many situations there is

a discrepancy between the behaviour of the real world and the way it is assumed to behave
by the model. Thus, reliability and accuracy have not only a statistical component but also a
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6 Modifications, Adaptations, and Applications 15

biological one. Most real-life sampling situations violate the assumptions of the underlying models
of sampling theory and can render those methods invalid. In such cases, the results may bring
about misleading conclusions. In addition, sampling in some environments, such as coastal areas,
can be severely constrained by practical considerations.

The material in this section addresses some of these “practical considerations” that occur in the field.

The Problem with “Breast Height” (BH)

Brokaw and Thompson (2000) did an extensive survey of the literature and found that more than half the
papers that used BH did not report the actual value used. Of those that did report BH, values ranged from
120 cm to 160 cm. See Table 11.

TABLE 11. The distribution of values stated for “breast height” (BH)
in papers published in Biotropica, Ecology, Journal of Tropical Ecology,
Forest Service, and Forest Ecology and Management during the period
1988–1997. Adapted from Brokaw and Thompson (2000), Table 1.

BH (cm) 120 130 135 137 140 150 160 None Total

Articles 1 113 2 28 27 10 1 258 440

Since the mode of the BH-values listed was 130 cm, Brokaw and Thompson (2000) strongly suggest adopting
this as the standard BH-value. They strongly suggest denoting this value by D130 rather than DBH while
reserving DBH as a generic term. At a minimum, the BH-value used should be explicitly stated. If a value x
other than 130 cm is used, it might be denoted as Dx.

As one would expect, DBH does decrease as height increases. In a field survey of 100 trees, Brokaw and
Thompson (2000) found that the mean difference between D130 and D140 was 3.5 mm (s = 5.8, n = 100).
This difference matters. Brokaw and Thompson (2000) report that this resulted in a 2.6% difference in total
basal area. When biomass was was calculated using the equation

ln(dry weight) = −1.966 + 1.242 ln(DBH2)

there was a 4.0% difference.

Using different values of BH within a single survey may lead to erroneous results. Additionally, Brokaw and
Thompson’s (2000) results show that failing to indicate the value of BH may lead to erroneous comparisons of
characteristics such as diameter-class distributions, biomass, total basal area, and importance values between
studies.

Vacant Quarters and Truncated Sampling

A question that arises frequently is whether there is a distance limit beyond which one no longer searches for a
tree (or other organism of interest) in a particular quarter. The simple answer is, “No.” Whenever possible, it
is preferable to make sure that every quadrant contains an individual, even if that requires considerable effort.
But as a practical matter, a major reason to use the point-centered quarter method is its efficiency, which
is at odds with substantial sampling effort. Additionally, in Section 2 we noted that sample points along
the transect should be sufficiently far apart so that the same tree is not sampled at two adjacent transect
points. Dahdouh-Guebas and Koedam (2006) suggest that it may be preferable to establish a consistent
distance limit for the sampling point to the nearest individual rather than to consider the same individual
twice. (Note, however, that Cottam and Curtis (1956) explicitly state that they did not use any method to
exclude resampling a tree at adjacent transect points and that resampling did, in fact, occur.)

Whether because a distance limit is established for reasons of efficiency (often called truncated sampling) or
to prevent resampling, in practice vacant quarters, that is, quadrants containing no tree, may occur. In such
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cases the calculation of the absolute density must be corrected, since a density calculated from only those
quarters containing observations will overestimate the true density.

Warde and Petranka (1981) give a careful derivation of a correction factor (CF) to be used in such cases. In
the language of the current paper, as usual, let n denote the number of sampling points and 4n the number
of quarters. Let n0 denote the number of vacant quarters.

Begin by computing the density for the 4n−n0
non-vacant quarters,

r̄′ =

4n−n0∑
m=1

Rm

4n− n0
,

where Rm is the distance from tree m to its
corresponding transect sample point. This is
just the analog to (1). Then

Corrected Absolute Density = λ̂c

= CF
(r̄′)2 , (8)

where CF is the correction factor from Ta-
ble 12 corresponding to the proportion of va-
cant quarters, n0

4n .

TABLE 12. Values of the correction factor (CF) to the density
estimate based on the formula of Warde and Petranka (1981).

n0/4n CF n0/4n CF n0/4n CF n0/4n CF

0.005 0.9818 0.080 0.8177 0.155 0.7014 0.230 0.6050
0.010 0.9667 0.085 0.8091 0.160 0.6945 0.235 0.5991
0.015 0.9530 0.090 0.8006 0.165 0.6877 0.240 0.5932
0.020 0.9401 0.095 0.7922 0.170 0.6809 0.245 0.5874
0.025 0.9279 0.100 0.7840 0.175 0.6742 0.250 0.5816

0.030 0.9163 0.105 0.7759 0.180 0.6676 0.255 0.5759
0.035 0.9051 0.110 0.7680 0.185 0.6610 0.260 0.5702
0.040 0.8943 0.115 0.7602 0.190 0.6546 0.265 0.5645
0.045 0.8838 0.120 0.7525 0.195 0.6482 0.270 0.5590
0.050 0.8737 0.125 0.7449 0.200 0.6418 0.275 0.5534

0.055 0.8638 0.130 0.7374 0.205 0.6355 0.280 0.5479
0.060 0.8542 0.135 0.7300 0.210 0.6293 0.285 0.5425
0.065 0.8447 0.140 0.7227 0.215 0.6232 0.290 0.5370
0.070 0.8355 0.145 0.7156 0.220 0.6171 0.295 0.5317
0.075 0.8265 0.150 0.7085 0.225 0.6110 0.300 0.5263

Note that as the proportion of vacant quarters increases, CF decreases and, consequently, so does the estimate
of the density (as it should).

Caution: Dahdouh-Guebas and Koedam (2006) propose (without mathematical justification) using a
correction factor of CF′ = 1− n0

4n . While this correction factor also lowers the value of the density based on
the trees actually measured, this correction differs substantially from that derived by Warde and Petranka
(1981). For example, if 5% of the quarters are vacant, then from Table 12 we find CF = 0.873681 while
CF′ = 0.95.

The Problem of Unusual Trees or Tree Clusters

Single Trunk Splitting. In Section 2 the problem
of trees with multiple trunks was briefly considered.
What we had in mind there was a tree whose single
trunk split into two or more trunks below breast height
(130 cm). See Figure 4.
In such a case, there is an unambiguous distance from
the point along the transect to the main trunk of the
tree. Further, it is natural to obtain the basal area for
the tree as the sum of the basal areas for all of the
trunks at breast height.

FIGURE 4. A tree with a
single trunk that splits into
multiple trunks below 130 cm.
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Tight Clusters. However, other configurations of multi-stem trees are possible. A tree may have tightly-
clustered multiple trunks at ground level as in Figure 5. In such a case, the entire complex is a single
individual. The distance from the transect reference point may be measured to the center of the cluster or,
alternatively, be measured as the average of the distances to each of the trunks. As in the previous case, it
is natural to obtain the basal area for the tree as the sum of the basal areas for all of the trunks at breast
height. (Note: This differs from the the procedure outlined in Dahdouh-Guebas and Koedam (2006) where
they suggest using the central stem of the cluster. But they are describing problems with mangroves whose
growth architecture is quite different than the trees in the forests of North America. The trees in question
here are more similar to those with split trunks.)

FIGURE 5. A birch tree with tightly clustered multiple
trunks at ground level.

Loose Clusters. Tree clusters such as mangroves present significantly more complicated measurement
issues for the point-centered quarter method. Even determining the distance from the transect reference
point to such a tree is complicated. Individual stems may be interconnected over relatively large distances, so
how does one determine which stems are part of the same individual? The researcher facing such issues is
directed to the paper by Dahdouh-Guebas and Koedam (2006) in which they suggest solutions to these and
other related questions.

FIGURE 6. A individual mangrove with its prop roots has
a complex array of roots and stems.

Miscellaneous Issues

Crooked Trunks. In Section 2 we indicated that diameters should be measured at a consistent height and
suggested that D130 be used. However, some trees may be crooked or growing (somewhat) horizontally at 130
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cm above the forest floor. Dahdouh-Guebas and Koedam (2006) suggest that the diameter of such a stem or
trunk always be measured at 130 cm along the stem, whether or not this is actually 130 cm above the ground.

Dead Trees. The implicit but unstated assumption in Section 2 was that we were measuring live trees in
the survey. However, depending on the purpose of the survey, dead trees may be important to include. This
might be the case if the purpose is to assess exploitable firewood. Such decisions should be explicitly noted in
the methods section of the resulting report.

Reversing the roles of live and dead trees, Rheinhardt et al. (1997) used the point-centered quarter method to
determine the biomass of standing dead trees in a wetland and also the biomass of coarse woody debris
available for nutrient recycling. In the latter case the distance, diameter (minimum 4 in), and length (minimum
3 ft) of the debris item nearest to the transect sampling point in each quarter was recorded.

Novel Applications

Distance methods have been commonly used for vegetation surveys and are easily adapted to inventories of
rare plants or other sessile organisms. The approach may also be useful for population studies of more mobile
animal species by obtaining abundance estimates of their nests, dens, roosting sites, or scat piles.

Nests and Burrows. Lord Howe Island is a 1455 ha island in the South Pacific Ocean, 495 km east of
the Australian mainland. The flesh-footed shearwater (Puffinus carneipes) is a medium-sized shearwater
with black plumage, pale pinkish feet, and a pale bill with a distinct black tip. On Lord Howe Island these
shearwaters nest in single-species colonies at low elevations. The birds excavate burrows up to 3 m long in
sandy soils. In 1978, Fullagar and Disney (1981), using the point-centred quarter method and (1), estimated
burrow density.

McGrath and Murphy (2012) quantified double-crested cormorant nesting colonies’ influence on coarse woody
litter and how nest densities and litter depth may influence the herbaceous layer, the seed bank composition
and viability across the extent of three Lake Erie islands. Herbaceous layer surveys, cormorant nest counts,
soil seed bank cores, and litter depth measurements were all executed using the point-center quarter method
to test island-wide impacts from nesting activities.

Grasslands. The point-centered quarter method has been adapted to measure density and importance
values when sampling grassland vegetation. Dix (1961) used the distance, measured at ground level, from the
sampling point to the emergence from the soil of the nearest living herbaceous shoot in each quarter. Since
this was the only measurement recorded, importance values were determined using only relative densities and
relative frequencies.

Penfound (1963) modified Dix’s method to include a relative cover or weight component to better match
importance values of trees. In particular, once the distance to a culm or plant was measured, the plant
was cut off at soil level and later its oven-dry weight was determined. The relative weight for each species
was determined as the total weight for the species divided by the total weight for all species times 100 to
express the result as a percentage. The importance of each species was then defined as the sum of the relative
frequency, relative density, and relative weight.

On the surface of it, the aggregation often exhibited grassland populations violates the assumption of the
random distribution assumption of the point-centered quarter method. Indeed, empirical studies by Risser
and Zedler (1968) and Good and Good (1971) indicate that the point-centered quarter method appears
to underestimate species density in such cases. In particular, Risser and Zedler (1968) suggest that when
using the point-centered quarter method on grasslands, one should check against counts made using quadrat
samples.

Also available at http://people.hws.edu/mitchell/PCQM.pdf Second Revision: 2023.08.15.16:11:39

http://people.hws.edu/mitchell/PCQM.pdf


A Accuracy, Precision, and the 30–300 Rule 19

Animal Surveys. The point-centered quarter method was adapted in a series of projects of my students to
determine the densities and importance values of certain sessile or relatively slow moving marine organisms.

One group carried out a project surveying holothurians (sea cucumbers) in the reef flat of Lady Elliot
Island, a coral cay of the Great Barrier Reef. Transects were laid out in the usual way and the distance and
species of the nearest holothurian to each sampling point were recorded for each quarter. These data allowed
computation of the relative density and relative frequency for each species.
To take the place of relative cover, the volume of each holothurian was
recorded. Volume was estimated by placing each individual in a bucket
full of sea water and then removing it. The bucket was then topped
off with water from a graduated cylinder and the volume of this water
recorded. Since volume and mass are proportional, the relative volume
is an approximation of the relative biomass. The sum of the relative
density, relative frequency, and relative volume for each species gave
its importance value. Bohadschia argus
A similar survey was conducted both in a reef flat and in an intertidal
zone of a sand island for asteroidea (sea stars) using radial “arm length”
instead of DBH. Another survey, this time of anemones in the intertidal
zone of a sand island was conducted. Since these organisms are more
elliptical than circular, major and minor axes were measured from
which area occupied could be estimated.
While no extensive testing of the accuracy of these methods was con-
ducted, say against values derived from using quadrats, the use of the
point-centered quarter method in each case provided at least a reason-
able preliminary snapshot of the relative importance and densities of
the organisms surveyed. Linckia laevigata

A Final Caution. Whenever encountering a non-typical situation, it is important to note the situation
and its resolution in the resulting report. Be consistent about all such choices. Additional problem issues
with possible resolutions are described in Dahdouh-Guebas and Koedam (2006, Appendix B).

A Accuracy, Precision, and the 30–300 Rule4

All biologists are aware of the importance of accuracy and precision in data collection and recording. While
these two terms are used synonymously in everyday speech, they have different meanings in statistics.
Accuracy is the closeness of a measured or computed value to its true value, while precision is the closeness
of repeated measurements of the same quantity to each other. A biased but sensitive instrument may yield
inaccurate but precise readings. On the other hand, an insensitive instrument might result in an accurate
reading, but the reading would be imprecise, since another reading of the same object would be unlikely
to yield an equally accurate value. Unless there is bias in a measuring instrument, precision will lead to
accuracy.

Some measurements are by their nature precise. When we count eggs in a monitor lizard’s nest and record
the number as 9 or 13, these are exact numbers and, therefore, precise variates. Most continuous variables,
however, are approximate with the exact value unknown and unknowable. Recordings of continuous variable
data imply a level of precision by the number of digits used. For example, if the length of an adult female
monitor lizard is recorded as 97.2 cm, the implied true value of the length is between 97.15 and 97.25 cm. In
other words, the last digit recorded defines an interval in which the exact value of the variable resides. A
measurement of 97 cm implies a length between 96.5 and 97.5 cm.

In most studies too much precision can slow down data collection while not contributing significantly to the
resolution of scientific questions. While it doesn’t make sense to measure large eucalyptus trees to the nearest

4The material in this section excerpted from Glover and Mitchell (2008)’s An Introduction to Biostatics, Second Edition,
page 23.
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millimeter or to weigh sperm whales to the nearest gram, what level of precision should be recorded? To how
many significant figures should we record measurements? Many biologists use the thirty—three-hundred
rule (30–300) to determine precision for data sets. This rule is easy to apply and will save a great deal of
time and effort. Array the sample by order of magnitude from largest to smallest measurement. The number
of unit steps between the largest and smallest value should be between 30 and 300. For example, if you were
collecting small shells in the intertidal zone of a beach and the largest was 9 mm and the smallest was 5
mm, the number of units steps would be 4 (a unit step is a millimeter in this example). If you recorded the
lengths to the nearest tenth of a millimeter with the largest being 9.2 mm and the smallest 5.1 mm in length,
the unit step is now 0.1 mm and there are 41 unit steps (9.2− 5.1 = 4.1 mm or 41 tenths of mm) in the data
array. The data set will now give you enough precision for most statistical analyses and allow for a reasonable
error in recording, that is, a mistake of 1 in the last digit recorded is now less than 2.5% as opposed to 25%
when the data were recorded to the nearest millimeter.

If sedge plant heights were measured to the nearest tenth of centimeter with the tallest being 194.3 cm and
the shortest being 27.1 cm, the unit step would be tenths of centimeters and the data array would have 1672
unit steps (194.3− 27.1 = 167.2 or 1672 tenths of cm). Clearly there is more precision in this data set than is
needed. Recording these plant heights to the nearest centimeter would yield 167 unit steps (194− 27 = 167
cm) and would give enough precision for analysis while saving time and effort in data collection.

B Technical Details

This section outlines the derivation of the density estimate in Section 4 and the estimate and corresponding
confidence interval endpoints in Section 5. It also discusses other similar methods of estimating density using
plotless methods.

Derivation of Equation (1)

Assume that a set of points (plants) is distributed randomly over a two-dimensional region where λ is the
mean number of points per unit area (density). The probability that a randomly chosen region of unit area
will contain x points is given by the Poisson distribution

λxe−λ

x! .

More generally, start with a circle of radius r that is centered at a point chosen at random along a transect.
Assume that the circle has been divided into q equiangular sectors and let the region in question be one of
these sectors. Then its area is πr2/q. If q = 1, the region is the entire circle; if q = 4 this is the point-centered
quarter method. Morisita (1954) used the term “angle methods” to describe density estimates based on this
process. The expected number of points in one such sector of the circle is λπr2/q and the so the probability
of finding x points in a sector is

(λπr2q−1)xe−λπr2q−1

x! . (9)

Setting x = 0, we obtain the probability that a sector of the circle of radius r will contain no points.

P (no individuals in a sector circle of radius r) = e−λπr
2q−1

. (10)

Equation (10) is a function of r that represents the probability that the distance from the sample point to
the nearest individual within the sector is at least r. Consequently,

P (at least 1 individual in the circle of radius r) = 1− e−λπr
2q−1

. (11)

Differentiating (11) gives the probability density function for r

f(r) = 2λπrq−1e−λπr
2q−1

. (12)
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Therefore, the probability that there is at least one individual in the sector between distances a and b from
the center of the circle is ∫ b

a

2λπrq−1e−λπr
2q−1

dr. (13)

The expected (mean) value of r is obtained by integrating rf(r) over (0,∞). Using integration by parts and
then the substitution u =

√
λπ√
q r,

E(r) =
∫ ∞

0
2λπr2q−1e−λπr

2q−1
dr

= −re−λπr
2q−1

∣∣∣∣∞
0

+
∫ ∞

0
e−λπr

2q−1
dr

= 0 +
√
q

√
λπ

∫ ∞
0

e−u
2
du

=
√
q

√
λπ
·
√
π

2

=
√
q

2
√
λ
, (14)

Solving for the density λ in (14) we obtain

λ = q

4[E(r)]2 . (15)

Using the sample mean r̄ to estimate E(r) and the point-centered quarter method with q = 4, we obtain the
estimate of the density in (1),

λ̂ = 1
r̄2

As Pollard (1971) and others point out, this estimate is biased.

Derivation of Formula 5.1

The intuition used in Sections 4 and 5 was that the density and the mean area occupied by a tree are
reciprocals of each other. Assume that n random sampling points have been selected along a transect and that
there are q equiangular sectors centered at each such point. For i = 1, . . . , n and j = 1, . . . , q let Ri,j denote
the distance from the ith sample point to the nearest individual in the jth sector. Since these distances are
independent, using (12) the likelihood of their joint occurrence is the product(

2λπR1,1q
−1e−λπR

2
1,1q

−1
)(

2λπR1,2q
−1e−λπR

2
1,2q

−1
)
· · ·
(

2λπRn,qq−1e−λπR
2
n,qq

−1
)

= (2λπq−1)nq(R1,1R12 · · ·Rn,q)e
−λπq−1

∑n

i=1

∑q

j=1
R2
i,j .
(16)

To simplify notation, denote the nq distances Ri,j by Rm form = 1, . . . , nq using the one-to-one correspondence
(i, j)↔ j+(i−1)q. For example, R1,1 ↔ R1, R1,q ↔ Rq, R2,1 ↔ Rq+1, and Rn,q ↔ Rnq. Then (16) becomes

(2λπq−1)nq(R1R2 · · ·Rnq)e−λπq
−1
∑nq

m=1
R2
m . (17)

Using the nq sample distances, an estimate of the mean area occupied by a tree is given by

πq−1∑nq
m=1 R

2
m

nq
.
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If our intuition is correct, the expected value of the reciprocal of this mean area

E

[
nq

πq−1∑nq
m=1 R

2
m

]
=
∫ ∞

0
· · ·
∫ ∞

0

∫ ∞
0

nq

πq−1∑nq
m=1 R

2
m

(2λπq−1)nq(R1R2 · · ·Rnq)e−λπq
−1
∑nq

m=1
R2
m dR1dR2 · · · dRnq (18)

should be λ. To carry out this calculation, use the substitution (see Pollard (1971))

uj = λπq−1
j∑

m=1
R2
m j = 1, . . . , nq

with Jacobian

J(u1, u2, . . . , unq) =

∣∣∣∣∣∣∣∣∣
2λπq−1R1 0 · · · 0
2λπq−1R1 2λπq−1R2 · · · 0

...
...

...
...

2λπq−1R1 2λπq−1R2 · · · 2λπq−1Rnq

∣∣∣∣∣∣∣∣∣ = (2λπq−1)nqR1R2 · · ·Rnq.

The limits of integration for unq are 0 to ∞ and for um (i = m, . . . , nq − 1) they are 0 to um+1. So (18)
becomes

E

[
nq

πq−1∑nq
m=1 R

2
m

]
= E

[
λnq

unq

]
=
∫ ∞

0
· · ·
∫ u3

0

∫ u2

0

λnq

unq
e−unq du1du2 · · · dunq

=
∫ ∞

0
· · ·
∫ u3

0

λnqu2

1 · unq
e−unq du2 · · · dunq

=
∫ ∞

0
· · ·
∫ u4

0

λnqu2
3

2 · 1 · unq
e−unq du3 · · · dunq

...

=
∫ ∞

0

λnqunq−1
nq

(nq − 1)!unq
e−unq dunq

= λnq

(nq − 1)!

∫ ∞
0

unq−2
nq e−unq dunq

= λnq

nq − 1 . (19)

So the reciprocal of the mean area occupied by a tree is also a biased estimate of λ, but the bias is easily
corrected. An unbiased estimate of the density is

λ̂ = nq − 1
nq

· nq

πq−1∑nq
m=1 R

2
m

= q(nq − 1)
π
∑n
i=1
∑q
j=1 R

2
ij

. (20)

For the point-centered quarter method method where q = 4 we have that an unbiased estimate of the density
is

λ̂ = 4(4n− 1)
π
∑n
i=1
∑4
j=1 R

2
ij

,

which is Formula 5.1.

It is worth mentioning the interpretation of (20) when q = 1. In this case the distance from each sample point
to the nearest individual is measured and an unbiased estimate of the density is given by the simpler formula

λ̂ = n− 1
π
∑n
i=1 R

2
i

. (21)
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Confidence Intervals and the Derivation of Formula 5.2

Next, recall that the probability density function of the chi-square distribution for x ≥ 0 is

f(x; k) =
( 1

2
)k/2

xk/2−1

Γ(k/2) e−x/2, (22)

where k denotes degrees of freedom and Γ(z) is the gamma function.5 If we let y = 2λπr2q−1, then
dy = 4λπrq−1 dr so (13) may be written as ∫ πb2

πa2

1
2e
−y/2 dy.

In other words, using (22) with k = 2 and (13) we see that 2λπr2q−1 is distributed as χ2
(2).

To generalize, assume as before that we have selected n random sampling points along a transect and that
there are q equiangular sectors centered at each such point. For i = 1, . . . , n and j = 1, . . . , q let Rij denote
the distance from the ith sample point to the nearest individual in the j sector. From (16) the probability of
their joint occurrence is the product

(2λπq−1)nq(R11R12 · · ·Rnq)e
−λπq−1

∑n

i=1

∑q

j=1
R2
ij .

Since the distances are independent and since each 2λπR2
ijq
−1 is distributed as χ2

(2), then

2λπq−1
n∑
i=1

q∑
j=1

R2
ij ∼ χ2

(2nq). (23)

Consequently, a (1− α)100% confidence interval for λ is determined by the inequalities

χα
2 (2nq) < 2λπq−1

n∑
i=1

q∑
j=1

R2
ij < χ1−α2 (2nq).

Solving for λ we obtain the following result.
FORMULA B.1. Assume n random sampling points have been selected along a transect and that there are q
equiangular sectors centered at each such point. For i = 1, . . . , n and j = 1, . . . , q let Rij denote the distance from the
ith sample point to the nearest individual in the jth sector. A (1− α)100% confidence interval for the density λ is
given by (C1, C2), where

C1 =
qχα

2 (2nq)

2π
∑n

i=1

∑q

j=1 R
2
ij

and C2 =
qχ1−α2 (2nq)

2π
∑n

i=1

∑q

j=1 R
2
ij

.

In particular, for the point-centered quarter method where q = 4, we have

C1 =
2χα

2 (8n)

π
∑n

i=1

∑4
j=1 R

2
ij

and C2 =
2χ1−α2 (8n)

π
∑n

i=1

∑4
j=1 R

2
ij

.

EXAMPLE B.1. Return to Example 5.2 and calculate a confidence interval for the density using Formula B.1.
SOLUTION. From Formula B.1,

C1 =
2χα

2 (8n)

π
∑n

i=1

∑4
j=1 R

2
ij

=
2χα

2 (120)

π
∑15

i=1

∑4
j=1 R

2
ij

= 183.15
1092.11 = 0.1677.

and
C2 =

2χ1−α2 (8n)

π
∑n

i=1

∑4
j=1 R

2
ij

=
2χ1−α2 (120)

π
∑15

i=1

∑4
j=1 R

2
ij

= 304.42
1092.11 = 0.2787.

This interval is nearly identical to the one computed in Example 5.2 using a normal approximation.
5In particular, if z is a positive integer, then Γ(z) = (z − 1)!.
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Normal Approximation

A difficulty with calculating confidence intervals using Formula B.1 is that 2nq is often greater than the
degrees of freedom listed in a typical χ2-table. For larger values of 2nq, the appropriate χ2 values can be
obtained from a spreadsheet program or other statistical or mathematical software.

Alternatively, one can use a normal approximation. It is a well-known result due to Fisher that if X ∼ χ2
(k),

then
√

2X is approximately normally distributed with mean
√

2k − 1 and unit variance. In other words,√
2X −

√
2k − 1 has approximately a standard normal distribution.

In the case at hand, 2λπq−1∑n
i=1
∑q
j=1 R

2
ij ∼ χ2

(2nq). Therefore, the endpoints for a a (1−α)100% confidence
interval for λ are determined as follows:

zα/2 <

√
2
(

2λπq−1∑n
i=1
∑q
j=1 R

2
ij

)
−
√

2(2nq)− 1 < z1−α/2

⇐⇒ zα/2 +
√

4nq − 1 <
√

4λπq−1∑n
i=1
∑q
j=1 R

2
ij < z1−α/2 +

√
4nq − 1

⇐⇒
zα/2 +

√
4nq − 1√

4πq−1∑n
i=1
∑q
j=1 R

2
ij

<
√
λ <

z1−α/2 +
√

4nq − 1√
4πq−1∑n

i=1
∑q
j=1 R

2
ij

.

Squaring, we find:
FORMULA B.2. For nq > 30, the endpoints of a (1 − α)100% confidence interval for the density λ are well-
approximated by

C1 =
(
zα

2
+
√

4nq − 1
)2

4πq−1
∑n

i=1

∑q

j=1 R
2
ij

and C2 =
(
z1−α2 +

√
4nq − 1

)2
4πq−1

∑n

i=1

∑q

j=1 R
2
ij

.

For the point-centered quarter method where q = 4 we obtain

C1 =
(
zα

2
+
√

16n− 1
)2

π
∑n

i=1

∑4
j=1 R

2
ij

and C2 =
(
z1−α2 +

√
16n− 1

)2
π
∑n

i=1

∑4
j=1 R

2
ij

.

Note that the later formula above is Formula 5.2.

Further Generalizations: Order Methods

Order methods describe the estimation of the density λ by measuring the distances from the sample point
to the first, second, third, etc. closest individuals. Note: The data collected during point-centered quarter
method sampling (as in Table 1) do not necessarily measure the first through fourth closest individuals to
the sample point because any two, three, or four closest individuals may lie in a single quadrant or at least
be spread among fewer than all four quadrants.

The derivation that follows is an adaptation of Moore (1954), Seber (1982), Eberhardt (1967), and Morisita
(1954). We continue to assume, as above, that the population is randomly distributed with density λ so that
the number of individuals x in a circle of radius r chosen at random has a Poisson distribution

P (x) = (λπr2)xe−λπr2

x! .

Let R(k) denote the distance to the kth nearest tree from a random sampling point. Then

P (R(k) ≤ r) = P (finding at least k individuals in a circle of area πr2)

=
∞∑
i=k

e−λπr
2

[(
λπr2)i
i!

]
. (24)
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Taking the derivative of (24), the corresponding pdf for r is

fk(r) =
∞∑
i=k

(
−2λπre−λπr

2

[(
λπr2)i
i!

]
+ e−λπr

2

[
2iλπr

(
λπr2)(i−1)

i!

])

= 2λπre−λπr
2
∞∑
i=k

(
−
(
λπr2)i
i! +

(
λπr2)(i−1)

(i− 1)!

)

=
2λπre−λπr2 (

λπr2)(k−1)

(k − 1)!

= 2(λπ)kr2k−1e−λπr
2

(k − 1)! , (25)

which generalizes (12). In other words, the probability that the kth closest tree to the sample point lies in
the interval between a and b is ∫ b

a

2(λπ)kr2k−1e−λπr
2

(k − 1)! dr. (26)

If we use the substitution y = 2λπr2 and dy = 4λπr dr, then (26) becomes∫ 2λπb2

2λπa2

( 1
2
)k
yk−1e−y/2

(k − 1)! dy.

In other words, the pdf for y is

gk(y) =
( 1

2
)k
yk−1e−y/2

(k − 1)!
and so it follows from (22) that

2λπR2
(k) ∼ χ

2
(2k). (27)

Now assume that n independent sample points are chosen at random. Similar to the derivation of (20), we
have that an unbiased estimate of the density is

λ̂ = kn− 1
π
∑n
i=1 R

2
(k)i

. (28)

Moreover, from (27) it follows that

2λπ
n∑
i=1

R2
(k)i ∼ χ

2
(2kn). (29)

Consequently, a (1− α)100% confidence interval for λ is determined by the inequalities

χα
2 (2kn) < 2λπ

n∑
i=1

R2
(k)i < χ1−α2 (2kn).

Solving for λ, a (1− α)100% confidence interval is given by (C1, C2), where

C1 =
χα

2 (2kn)

2π
∑n
i=1 R

2
(k)i

and C2 =
χ1−α2 (2kn)

2π
∑n
i=1 R

2
(k)i

. (30)

A special case. Notice that when k = 1 only the nearest individual to the sample point is being measured.
This is the same as taking only q = 1 sector (the entire circle) in the two preceding sections. In particular,
when k = q = 1, the unbiased estimates for λ in (28) and (20) agree as do the confidence interval limits in
(30) and Formula B.1.

EXAMPLE B.2. Use the closest trees to the 15 sample points in Example 5.2 to estimate the density and find a 95%
confidence interval for this estimate.
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SOLUTION. From Example 5.2 we have

Ri 1.2 0.7 2.3 1.0 0.9 0.7 0.7 1.1 1.0 0.7 1.0 0.6 0.2 1.1 1.2

πR2
(1)i 4.52 1.54 16.62 3.14 2.54 1.54 1.54 3.80 3.14 1.54 3.14 1.13 0.13 3.80 4.52

Check that π
∑15

i=1 R
2
(1)i = 52.64. Since n = 15 and k = 1, then from (28)

λ̂ = kn− 1
π
∑n

i=1 R
2
(1)i

= 1(15)− 1
52.64 = 0.2660 trees/m2

or 2660 trees/ha. From (30) we find

C1 =
χα

2 (2kn)

2π
∑n

i=1 R
2
(1)i

=
χ0.025(30)

2(52.64) = 16.2
105.28 = 0.1596

and
C2 =

χ1−α2 (2kn)

2π
∑n

i=1 R
2
(1)i

=
χ0.975(30)

2(52.64) = 47.0
105.28 = 0.4464.

This is equivalent to a confidence interval of (1596, 4464) trees/ha. With fewer estimates this confidence interval is
wider than the one originally calculated in Example 5.2.

Normal Approximation

For larger values of 2kn, one can use a normal approximation. In the case at hand, 2λπ
∑n
i=1 R

2
(k)i ∼ χ

2
(2kn).

Adapting the argument that precedes Formula B.2 the endpoints for a (1− α)100% confidence interval for λ
are determined as follows:

zα/2 <

√
2
(

2λπ
∑n
i=1 R

2
(k)i

)
−
√

2(2kn)− 1 < z1−α/2

⇐⇒ zα/2 +
√

4kn− 1 <
√

4λπ
∑n
i=1 R

2
(k)i < z1−α/2 +

√
4kn− 1

⇐⇒
zα/2 +

√
4kn− 1√

4π
∑n
i=1 R

2
(k)i

<
√
λ <

z1−α/2 +
√

4kn− 1√
4π
∑n
i=1 R

2
(k)i

Squaring, we find that the endpoints of a (1− α)100% confidence interval for λ are

C1 =
(
zα/2 +

√
4kn− 1

)2

4π
∑n
i=1 R

2
(k)i

and C2 =
(
z1−α/2 +

√
4kn− 1

)2

4π
∑n
i=1 R

2
(k)i

. (31)

Typically, kn > 30 before one would use a normal approximation.

Again note that when k = q = 1, (31) and Formula B.2 agree. For comparison purposes only, we now use
(31) to determine a 95% confidence interval for the density in Example B.2. We obtain

C1 =
(
z0.025 +

√
4kn− 1

)2

4π
∑n
i=1 R

2
(k)i

=
(
−1.96 +

√
60− 1

)2

4(52.64) = 0.1554

C2 =
(
z0.975 +

√
4kn− 1

)2

4π
∑n
i=1 R

2
(k)i

=
(
1.96 +

√
60− 1

)2

4(52.64) = 0.4414,

or (1554, 4414) trees/ha. This is not that different from the interval calculated in Example B.2

Angle-Order Methods

The angle and order methods may be combined by dividing the region about each sampling point into q
equiangular sectors and recording the distance to the kth nearest individual in each sector. Morisita (1957)
seems to have been the first to propose such a method.
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Randomly Distributed Populations

Though Morisita’s paper concerns methods to estimate the density of non-randomly distributed populations,
he first describes a combination of the angle and order methods that may be used to estimate density when a
population is randomly distributed. (See Morisita (1957, equation (15) of the translation).) Assume that
the distances to the kth closest individual in each of the q sectors are measured at each sample point. In
particular, let Let R(k)ij denote the distance from the ith sample point to the kth closest individual in the
jth sector. Then Morisita (1957, equation 15) shows that unbiased estimate of the density6 is

λ̂ = q(kqn− 1)
π
∑n
i=1
∑q
j=1 R

2
(k)ij

(32)

with variance
Var(λ̂) = λ̂2

π2(kqn− 2) . (33)

Note: If k = 1, then this estimate for λ̂ is the same as (20). Instead, if q = 1, then this estimate is the same
as (28). And if k = q = 1, then this estimate is using the closest individual at each sample point and is (21)

Non-Randomly Distributed Populations

When populations are not randomly distributed, Morisita (1957) proposed two unbiased estimates of the
density and gave guidelines governing when and how each estimate was to be used. Paraphrasing Morisita, to
deal with aggregated (clumped) populations, divide the total area into subplots with areas sufficiently small
so that no further aggregation exists in each. Then within each subplot, either the population is distributed
(1) randomly, possibly with different densities for each subplot; or (2) uniformly, again possibly with different
densities for each subplot.

For the random case, Morisita showed that an unbiased estimate of the overall density is given by

λ̂1 = k − 1
πn

n∑
i=1

q∑
j=1

1
R2

(k)ij
. (34)

Note: It is clear from the formula above that k must be at least 2. Though not apparent from the formula,
the estimate λ̂1 actually requires measuring the distances to the kth closest individual in each sector, where
k ≥ 3. This follows from the complicated formula for the variance (see Morisita (1957)) that involves a factor
of k − 2 in the denominator. This estimate is also discussed by Eberhardt (1967) and Seber (1982).

For the more uniform case, Morisita showed that an unbiased estimate of the density is given by

λ̂2 = kq − 1
πn

n∑
i=1

q∑q
j=1 R

2
(k)ij

= q(kq − 1)
πn

n∑
i=1

1∑q
j=1 R

2
(k)ij

. (35)

Not apparent from the formula above, the estimate λ̂2 requires that kq ≥ 3 because the variance (see Morisita
(1957)) involves a factor of kq − 2 in the denominator.

Be careful to note the difference in order of operations (reciprocals and summations) in these two estimates.
In particular,

n∑
i=1

1∑q
j=1 R

2
(k)ij

6=
n∑
i=1

q∑
j=1

1
R2

(k)ij
and

n∑
i=1

q∑
j=1

1
R2

(k)ij
6= 1∑n

i=1
∑q
j=1 R

2
(k)ij

.

6In the original Japanese manuscript, equation 15 is missing a factor of q and is stated incorrectly, in the notation of this
paper, as

λ̂ =
kqn− 1

π
∑n

i=1

∑q

j=1R
2
(k)ij

.

The English translation corrects this to the formula for λ̂ in (32).
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Notice that (35) is valid for q = 4 and k = 1, which corresponds to the using data collected in the ‘standard’
point-centered quarter method, and in that case simplifies to

λ̂2 = 12
πn

n∑
i=1

1∑4
j=1 R

2
ij

. (36)

This equation differs from the earlier biased estimate of λ for the point-centered quarter method in (1) and
the unbiased estimate in Formula 5.1. Equation (36) appears to have been rediscovered by Jost (1993).

Guidelines

Morisita (1957) summarizes the difference between the estimates as follows. In (34), the density in each
sector is estimated first, by computing 1

πR2
(k)ij

, and then the density of the total area is estimated using the
mean of the densities of all of the sectors of all of the sample points. In contrast, in (35), the density at each
sample point is calculated first, by computing q

π
∑q

j=1
R2
ij

, and then the density of the total area is estimated

using the mean of densities of all of the sample points. %Thus, the former would be more appropriate if
there were a significant difference %between sector densities at individual sample points, as might be the case
when the distribution is random.

At first it appears that one needs to know a lot about the distribution of the population before applying
one of these methods. However, Morisita makes the following observations. When the distribution is more
uniform, the variance in r is smaller than expected. So for two populations with the same density λ, the
value of

∑q
j=1 R

2
j for a uniform distribution is smaller than expected for a random distribution. (The sum of

squares is minimized when all the values are the same.) The reciprocal of this sum appears in (35) for λ̂2,
which tends to make λ̂2 an overestimate of the true density in the uniform case.

Similar reasoning applies to the sum of squares of the reciprocals:
∑q
j=1

1
R2
j
, too, will be smaller for a

uniform distribution than expected. Since exactly this sum appears in (34) for λ̂1, it will tend to make λ̂1
an underestimate of the true density in the uniform case. Thus, for the uniform case, averaging λ̂1 and λ̂2
should provide a reasonable estimate.

Consequently, Morisita (1957) suggests the following “practical protocol” to determine which density estimate
is most appropriate, even when the distribution of the population is unknown. Assuming that k ≥ 3 (so that
λ̂1 may be computed)

1. Calculate both λ̂1 and λ̂2.

2. If λ̂1 ≤ λ̂2, use their average

λ̂0 = λ̂1 + λ̂2

2 (37)

as the density estimate. (The distribution may be uniform, at least locally.)

3. If λ̂1 > λ̂2, use λ̂1 as the density estimate. (The distribution may be random, at least locally.)

Derivation of Equation (35). Given our previous work, it is relatively easy to derive (35) for the case
k = 1, that is, measuring the closest individual to the sample point in each sector (quarter). The motivating
idea is to estimate the density at each point along the transect separately and then average these estimates.
As usual, the density is measured by taking the reciprocal of the mean area occupied by individuals near
each sample point. With k = 1, the mean of the q estimates of the area occupied by an individual near the
ith sample point is ∑q

j=1 πq
−1R2

ij

q
.

The reciprocal gives an estimate of the density (near the ith point):
q

πq−1∑q
j=1 R

2
ij

.
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Averaging all n density estimates along the transect, yields the estimate

1
n

n∑
i=1

q

πq−1∑q
j=1 R

2
ij

.

However, using (19), we find that

E

[
1
n

n∑
i=1

q

πq−1∑q
j=1 R

2
ij

]
= 1
n

n∑
i=1

E

[
q

πq−1∑q
j=1 R

2
ij

]

= 1
n

n∑
i=1

[∫ ∞
0
· · ·
∫ ∞

0

q

πq−1∑q
j=1 R

2
ij

(2λπq−1)q(Ri1 · · ·Riq)e
−λπq−1

∑q

j=1
R2
ij dRi1 · · · dRiq

]

= 1
n

n∑
i=1

λq

q − 1

= λq

q − 1 ,

which means that the estimate is biased. An unbiased estimate of the density is

λ̂ = q − 1
q

[
1
n

n∑
i=1

q

πq−1∑q
j=1 R

2
ij

]
= q − 1

n

n∑
i=1

q

π
∑q
j=1 R

2
ij

.

This is the same as (35) with k = 1 or (36) with q = 4.

EXAMPLE B.3. If we use (36) and the data in Example 5.2 (where k = 1) we obtain

λ̂2 = 12
15π

15∑
i=1

1∑4
j=1 R

2
ij

= 0.2078 trees/m2. (38)

Table 13 compares this estimate to the estimates with the other applicable methods in this paper. In short, though
most estimates are similar, it is important to specify which formula one is using to estimate density when the
point-centered quarter method is employed.

TABLE 13. The various density estimates using the data in Example 5.2.

Equation Formula λ̂ Source

Equation (1) 1
r̄2 = 16n2(∑n

i=1

∑4
j=1

Rij

)2 0.2201 Cottam et al. (1953), Morisita (1954)

Formula 5.1 4(4n−1)
π
∑n

i=1

∑4
j=1

R2
ij

0.2161 Pollard (1971); Seber (1982)

Equation (28) kn−1
π
∑n

i=1
R2

(k)i
0.2660 Pollard (1971)

Equation (36) 12
πn

∑n

i=1
1∑4

j=1
R2
ij

0.2078 Morisita (1957)
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Engeman et al. (1994) examined a large number of methods to estimate density7 including those suggested
above in (28), (34), and (35). Of the estimators discussed in this paper, they concluded that the best
performing ones were the angle-order methods with q = 4 (that is, quarters) and k = 3 followed by q = 4 and
k = 2 and then the two order methods with k = 3 and then k = 2. However, notice that the efficiency is
decreased in the angle-order methods since in the first case 12 trees must be located at each sample point
and in the second case 8 trees.

More recently, Khan et al. (2016) examined Morisita’s angle-order estimate in equation (32) with q = 4
sectors and k = 1, 2, and 3. With these parameters, (32) simplifies to

λ̂1 = 4(4n− 1)
π
∑n
i=1
∑q
j=1 R

2
(1)ij

, λ̂2 = 4(8n− 1)
π
∑n
i=1
∑q
j=1 R

2
(2)ij

, λ̂3 = 4(12n− 1)
π
∑n
i=1
∑q
j=1 R

2
(3)ij

for k = 1, 2, and 3, respectively. They found that these estimates “show[ed] no significant differences
among them as tested in various spatial patterns except in plant assemblages with a strong repulsion (plant
competition).” In this later case, the estimate with k = 3 performed best. Since the spatial pattern is usually
unknown prior to surveying, they recommend using k = 3, unless plants are sparsely distributed.

C A Non-parametric Estimate

Most of the distance method density estimates discussed so far have the disadvantage of assuming complete
spatial randomness (CSR) in the distribution of the population in the area sampled. This assumption justifies
the use of the Poisson distribution in developing the various density estimates. However, many authors (e.g.,
see Engeman et al. (1994)) suggest that plant distributions are seldom random and are often aggregated.
In contrast, the use of non-parametric statistics to develop a density estimate would require no assumption
about the underlying distribution of organisms.

Patil et al. (1979) and Patil et al. (1982) developed a distance-based, non-parametric estimate of plant density.
It is beyond the scope of this paper to derive these formulæ. The latter paper revises their earlier work and
the estimates, which we state without proof, come from the suggested formulæ in Patil et al. (1982).

Non-parametric Estimates

Data are collected as in the special case of the order method described above. That is, at each of the n
sample points along the transect, the distance to the closest individual is recorded (there are no quarters).
These n distances are then ordered from smallest to largest. Let R(k) denote the kth order statistic, that is,
the kth smallest such distance. Next, for any real number r, let brc denote the floor function, that is, the
greatest integer less than or equal to r. Then

λ̂ = n2/3 − 1
nπR2

(bn2/3c)
. (40)

7A word of caution: The formulæ for angle-order density estimates are notationally complex and it is easy to make an error
in copying or using them. The formula for the angle-order method density estimate λ̂2 in (35), which is really Morisita (1957,
equation 31), is given in Engeman et al. (1994, pages 1771 and 1773) as

[nq(kq − 1)/π] Σ 1/R2
(k)ij . (39)

That is, they multiply by n rather than divide by n in the first factor. Based on (39), they then write (36) as

AO1Q: [12n/π] Σ 1/R2
(1)ij ,

and for k = 2 and k = 3, they write
AO2Q: [28n/π] Σ 1/R2

(1)ij ,

AO3Q: [44n/π] Σ 1/R2
(1)ij .

The error for AO2Q and AO3Q occurs again in White et al. (2008, Table 1).
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An estimate of the variance is given by

Var(λ̂) = λ̂2

n2/3 (41)

and so the the standard deviation is λ̂
n1/3 . For large samples, a confidence interval is developed in the usual

way: The endpoints of a (1− α)100% confidence interval for the density λ are well-approximated by

C1 = λ̂+
zα

2
λ̂

n1/3 and C2 = λ̂+
z1−α2 λ̂

n1/3 . (42)

EXAMPLE C.1. The data in Example B.2 lists the distances to the closest trees at n = 15 sample points. Estimate
the density non-parametrically.
SOLUTION. The ordered data are

R(k) 0.2 0.6 0.7 0.7 0.7 0.7 0.9 1.0 1.0 1.0 1.1 1.1 1.2 1.2 2.3

πR2
(k) 0.13 1.13 1.54 1.54 1.54 1.54 2.54 3.14 3.14 3.14 3.80 3.80 4.52 4.52 16.62

Now use (40) and (41). Since [n2/3] = [152/3] = [6.08] = 6, then R([152/3]) = R(6) = 0.7. Thus,

λ̂ = n2/3 − 1
nπR2

(bn2/3c)
= 152/3 − 1

15(1.54) = 0.2201 trees/m2.

This estimate of λ compares favorably with those given by the parametric formulæ in Table 13.

An estimate of the variance is given by

Var(λ̂) = λ̂2

n2/3 = (0.2201)2

152/3 = 0.0080

and for the standard deviation by
√

Var(λ̂) =
√

0.0080 = 0.0894. Though the sample size is not large, we illustrate
the calculation of a 95% confidence interval for λ.

C1 = λ̂+ z0.025λ̂

n1/3 = 0.2201− 1.96(0.0894) = 0.0449 trees/m2

and
C2 = λ̂+ z0.975λ̂

n1/3 = 0.2201 + 1.96(0.0894) = 0.3953 trees/m2.

This confidence interval is wider than the one calculated in Example B.2 using parametric methods. In the discussion
section of Patil et al. (1982), the authors note that the price for a robust density estimate “is the considerable increase
in variance as compared to a parametric estimator which assumes a specific spatial distribution of plants.”

Truncated Sampling

For truncated sampling, that is, when a consistent upper limit is placed on the search radius used about each
sample point, Patil et al. (1979) derived formulæ for the density and its variance. Using these formulæ with
the modifications in Patil et al. (1982) leads to the following. Let w be the upper limit for the radius beyond
which one does not search. Let n be the number of sample points and let n1 denote the number of sample
points with observations, that is, points where the distance to the nearest individual does not exceed w. (So
there are n0 = n− n1 sample points without observations.) The data are the order statistics R(k), where
k = 1, . . . , n1.

Then

λ̂t = n1

n

 n
2/3
1 − 1

n1πR2
(bn2/3

1 c)

 . (43)

An estimate of the variance is given by

Var(λ̂t) = λ̂2
t

n
2/3
1

+ λ̂2
t

(
1
n1
− 1
n

)(
1 + 1

n
2/3
1

)
. (44)
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For large samples, the endpoints of a (1−α)100% confidence interval for the density λ are well-approximated
by

C1 = λ̂t + zα
2

√
Var(λ̂t) and C2 = λ̂t + z1−α2

√
Var(λ̂t). (45)

EXAMPLE C.2. To illustrate these calculations return once more to the data in Example C.1. Suppose that the
students who collected the data only brought a 1 meter stick with them and so did not search for trees beyond a
meter from each sampling point. Then the data would consist of the n1 = 10 observations that were no greater than
1.0 m. Determine a density estimate non-parametrically.
SOLUTION. We have n = 15 sampling points, bn2/3

1 c = b102/3c = 4, and from the table in Example C.1, R(4) = 0.7.
Using (43), (44) we obtain

λ̂t = n1

n

(
n

2/3
1 − 1

n1πR2
(bn2/3c)

)
= 10

15

(
102/3 − 1
10πR2

(4)

)
= 2

3

(
3.6416

10π(0.7)2

)
= 0.1577 trees/m2

and

Var(λ̂t) = λ̂2
t

n
2/3
1

+ λ̂2
t

( 1
n1
− 1
n

)(
1 + 1

n
2/3
1

)
= (0.1577)2

102/3 + (0.1577)2
( 1

10 −
1
15

)(
1 + 1

102/3

)
= 0.00637.

So a 95% confidence interval for λ using these data would be

C1 = λ̂t + zα
2

√
Var(λ̂t) = 0.1577− 1.96

√
0.00637 = 0.0013 trees/m2

and
C2 = λ̂t + z1−α2

√
Var(λ̂t) = 0.1577 + 1.96

√
0.00637 = 0.3141 trees/m2.
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D Shiny Apps and R Scripts

This appendix provides links to three online R Shiny Apps that may be used to calculate most of the measures
discussed in the preceding pages. These require no technical knowledge of R. Additionally, for those who
use R, links to several scripts are provided that will allow you to calculate these same measures and more.
Examples illustrate both how to use these apps and scripts and to verify that they work as expected.

Using the Shiny Apps

I have written three Shiny apps to calculate many of the measures discussed in the preceding sections.

• PCQM Calculator for Importance Values;

• PCQM Calculator for Density Estimates;

• PCQM Calculator for Angle-Order Density Estimates.

Each app works the same way: (1) Upload a properly formatted data file; (2) select the appropriate analysis,
if necessary; and (3) read the results. Each app has a link to a Help Page describing how the data file must
be formatted for the app to work correctly. These directions are summarized below for each of the apps.

App: The PCQM Calculator for Importance Values

The PCQM Calculator for Importance Values does only one thing: It calculates importance values based on
the point-centered quarter method of sampling.

Creating the data file: Using a spreadsheet, create a comma-separated value (.csv) data file of your
importance value observations using the format below.

• The first row of the file should consist of column headers similar to:

Point,Quarter,Species,Distance,DBH

• As indicated by the column headers, subsequent rows of the file should consist of:

1. the sample point number along the transect;

2. the quarter number of the observation (1–4) at the sample point;

3. the species name of the tree (plant) nearest the sample point;

4. the distance of this tree to the sample point in meters (m);

5. the diameter at breast height (DBH) of this tree in centimeters (cm).

For example, for the fifth sample point and second quarter for the data in Table 1 the row would be:

5,2,Acacia,2.4,5

where the observed tree was an Acacia at 2.4 m from the sample point and with a DBH of 5 cm.

Warning: There should be no vacant quarters, that is, every quarter should have an observation.

• After entering all the data, the entire file should look like this one for sampling done at Pauoa Flats
(Mueller-Dombois and Ellenberg (1974, Table 7.4)). The first few rows of the file are shown here.

Sample.Pt,Qtr.No,Species,Distance.m,DBH.cm
1,1,Psidium guajava,0.7,5.5
1,2,Acacia koa,1.6,42.5
1,3,Metrosideros collina,3.5,17
1,4,Metrosideros tremuloides,2,25
2,1,Psidium guajava,1.1,4
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Using the app: Use the Browse button of the app to navigate to and then upload your data file. The
initial setting will display the first 8 rows at the head of the file to ensure you have selected the correct one.
You can change this value to display more or fewer rows; negative integer values will display rows at the tail
of the file.

Once the file is uploaded, the number of sample points and the absolute density (number of trees per hectare
without regard to species) are automatically displayed. Also displayed is a table with the relative density, the
relative cover (also known as the relative dominance), the relative frequency, and the importance value (sum
of the last three items) for each species observed. The final two columns display the relative importance and
the absolute density estimate for each species.

EXAMPLE D.1. Figure 7 illustrates the app interface for calculating importance values using the Pauoa Flats data
set. Feel free to download this data set and then try out the app.

FIGURE 7. The PCQM Calculator for Importance Values Shiny App at https://kjmitchell.shinyapps.io/PCQM_
Calculator_for_Importance_Values/.

Notice that the column headers need not be the exact names, Point, Quarter, Species, Distance, DBH, mentioned
earlier. However, an individual header cannot not have a comma as part of its name. There is some basic error
checking that occurs (e.g., every sample point must have exactly four quarters, there are no vacant cells).

The summary provides the number of sample points and the overall density. The data table lists the species in
descending order of importance.

EXERCISE D.1. Walker (2006) sampled a Pinus ponderosa - Pseudotsuga menzeisii forest on the north-facing slope
of Flagstaff Mountain, CO in 1994. (Data available at http://math.hws.edu/pcqm/FlagstaffMtn.csv.) Species key:
Pinpon = Pinus ponderosa, Psemen = Pseudotsuga menzeisii.) Download the data into your own computer file and
then use the app to determine the relative importance and estimated density of each species. [Answers: Relative
Importance: Psemen 83.88, Pinpon 16.12. Density: Psemen 907.90, Pinpon 82.54.]

App: PCQM Calculator for Density Estimates

The PCQM Calculator for Density Estimates may be used to calculate density estimates based on the
point-centered method of sampling.
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Creating the data file: At each sample point along the survey transect, the world is assumed to have
been divided into q equi-angular sectors. In each sector a distance from the sampling point to the nearest
tree or plant of interest has been recorded. Most often four quarters are used at each sampling point (q = 4).
Note:

• Four quarters (q = 4) are required for both the Cottam, Curtis, & Hale estimate and for the Warde &
Petranka estimate. For the Pollard estimate, any number of sectors is possible.

• Additionally, the Cottam, Curtis, & Hale and the Pollard estimates require an observation in each
sector. The Warde & Petranka estimate allows for vacant quarters. That is, it is designed for truncated
sampling where no observation is recorded in a quarter if no tree is encountered within some fixed
distance established prior to sampling.

• Finally the Patil non-parametric estimate uses a single observation (the closest tree) at each sampling
point, but also allows for truncated sampling.

Create a comma-separated value data file (.csv) in the following format.

• The first row of the file should consist of column headers for each of the q sectors. Typical headers
when using quarters might be

Q1, Q2, Q3, Q4 or A, B, C, D

or when using only q = 2 sectors at each sample point one might use I, II. Caution: Do not use just
numeric values such as: 1, 2, 3, 4 as these values may inadvertently be treated as data.

• Subsequent rows of the file consist of the distance in meters (m) from the sampling point to the nearest
tree in each sector. If truncated sampling is being used (Warde & Petranka or Patil estimates), some
cells may be blank. Thus, a subsequent line in the data file might take the form:

5.4,2.1,2.2,10.8

where the values are the distances in meters recorded in each of the four quarters at the sample point

• After entering all the data, the entire file should look like this one for sampling done by students at
Lamington National Park in Queensland.

Using the app: Use the Browse button to navigate to and then upload your data file. The initial settings
will display the first 8 rows at the head of the file to ensure you have selected the correct one. You can change
this value to display more or fewer rows; negative integer values will display rows at the tail of the file.

Use the radio buttons in the Density Estimator menu to choose the estimate appropriate to your sampling
method. The number of sectors q at each sampling point is automatically determined by the number of
columns in the data file.

• For sampling with any number of sectors and no vacant cells, use the Pollard estimate for an unbiased
density estimate with a 95% confidence interval.

• For truncated sampling (vacant cells) by quarters, use the Warde & Petranka estimate. If there are no
vacant quarters, the density estimate will be the same as the Cottam, Curtis, & Hale estimate.

• For sampling by quarters with no vacant cells, the Cottam, Curtis, & Hale estimate produces a biased
estimate (but has a long history of being used).

• The Patil non-parametric estimate uses just a single observation at each sampling point and also allows
for truncated sampling. Caution: If your data file contains multiple observations at a sampling point,
this method will automatically select the closest tree at each point.

EXAMPLE D.2. Figure 8 illustrates the app interface for calculating basic densities using the data from Example 5.2.
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FIGURE 8. The PCQM Calculator for Density Estimates Shiny App at https://kjmitchell.shinyapps.io/PCQM_
Calculator_for_Density_Estimates/. The summary lists the number of sample points and sectors, the density
estimate, and a 95% confidence interval, if the method allows for this.

EXERCISE D.2. The Magellanic penguin (Spheniscus
magellanicus) is a South American penguin, breeding
in coastal Patagonia, including Argentina, Chile, and
the Falkland Islands, with some migrating to Brazil and
Uruguay. They are medium-sized penguins which grow
to be 61–76 cm tall and weigh between 2.7 and 6.5 kg.
Breeding grounds for Magellanic penguins include Isla
Observatorio (shown here) and Goffré Island, Argentina
in the southwestern Atlantic.
Balza et al. (2022) conducted a study to update the
status of seabird colonies at both Observatorio and Goffré
Islands during the breeding season. In only 4.5 km2, the
islands harbor roughly 90,000 breeding seabirds.
Photo of Magellanic penguins courtesy of Ulises Balza.
To estimate their numbers Balza et al. (2022) used the point-centered quarter method. Their burrowed nests require
field inspection to assess occupancy. At each sample point along the transects they measured the distance to the
nearest occupied nest in each of four quarters.

On Goffré Island, they observed nests only in tussock grasslands and prairie and negligible amounts in rushland. They
used the Pollard method to estimate nest density.

Using their publicly available data, create a file to use with the The PCQM Calculator for Density Estimates to obtain
an estimate of penguin nest density in their study area.

[Answer: 95.1 nests/hectare; confidence interval: [72.4, 125.0] nests/hectare which agrees with their results.]
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App: PCQM Calculator for Density Estimates by Angle-Order Methods

The PCQM Calculator for Density Estimates by Angle-Order Methods may be used to calculate Morisita’s
density estimates based on angle-order methods with the point-centered method of sampling. The data file
structure required to use the app is similar to that required for the app in Example D.2 above. For details
see the Help Page for the app.

EXAMPLE D.3. Figure 9 illustrates the app interface for calculating densities using an angle-order method for
the data in Example 5.2. The density estimate agrees with the value listed earlier in Table 13 for Morisita (1957)
angle-order method for randomly distributed trees in (36).

FIGURE 9. The PCQM Calculator for Density Estimates by Angle-Order Methods at https://kjmitchell.shinyapps.
io/PCQM_Calculator_for_Angle-Order_Density_Estimates/. The summary describes the details of the method
used, the number of sample points, and the overall density.

EXERCISE D.3. In Khan et al. (2016, Tables 1, 2, 3 in the Supplementary Materials), the authors provided three
datasets from a randomly distributed simulated population with true density of 1000 trees/ha and n = 10 sample
points. The datasets use k = 1, 2, and 3, that is, the first, second, and third nearest tree in each quarter.

Download their Supplementary Material: S1 Table and create data files for k = 1, 2, and 3 from their three tables.
Use the PCQM Calculator for Density Estimates by Angle-Order Methods to carry out their analysis. Note: What
Khan et al. (2016) refer to as “Corrected PCQM” is the Morisita option in the app. Verify that your results are
identical to theirs.

What is R?

R is a language and environment for statistical computing and graphics. It is available as free software at
http://www.r-project.org under the terms of the Free Software Foundation’s GNU General Public License in
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source code form. It compiles and runs on a wide variety of operating systems such as Windows, MacOS,
and most UNIX platforms.

Initially, I used the base installation of R (and many people still do), but I now use RStudio which is an
Integrated Development Environment (IDE). RStudio is a free add-on to R which provides a user-friendly
interface including the R Console, a script editor, and many other features. RStudio is freely available for
Windows, Mac, and Linux operating systems and can be downloaded from the RStudio site (select “Download
Free Desktop IDE”). Note: You must install R before you install RStudio. You can find more information
about RStudio at https://www.rstudio.com.

There are many online resources to help you learn about R. Start with the R-project homepage at http:
//www.r-project.org. Here are a few others written for those just beginning to use R.

1. The online text An Introduction to R by Douglas et al. at https://intro2r.com;

2. The RStudio Team’s “RStudio Education” at https://education.rstudio.com/learn/beginner/;

3. Kelly Black’s extensive “R Tutorial” at https://www.cyclismo.org/tutorial/R/index.html.

Downloading the Basic Scripts

I have written four basic functions to carry out the calculations previously described that are contained in a
single file. They may be downloaded (once per session) using R’s source( ) command as shown.
source("http://math.hws.edu/pcqm/pcqm.txt")

## Downloaded: importance.val( )
## Downloaded: density.est( )
## Downloaded: angle.order.est( )
## Downloaded: np.density.est( )

Note: Lines that begin with ## consist of output from the command that precedes them. Examples in the
following sections describe what data these functions require, how this data should be formatted, how the
functions are used, and verify that the functions work as expected.

Script to Calculate Importance Value

The function importance.val( ) may be used to calculate the importance value of various species from
data collected using the point-centered quarter method. The function has the following form:

importance.val(z = dataframe)

Details: z is a data frame in which each row contains the following data in the order listed.

• The first column identifies the sample point along the transect. This may be a number or other
descriptor.

• The second column identifies the quarter in which the observation was made. Typically quarters
are designated 1, 2, 3, and 4. But other designations, such as orientation (NW, NE, SE, SW)
are possible. There must be four quarters associated with each sample point and the same four
quarter descriptors should (but not must) be used at each sample point.

• The third column lists the species name or other descriptor of the closest individual to the sample
point in the current quarter.

• The fourth column contains the distance (in meters) of the nearest individual to the sample point
in the current quarter.

• The fifth column contains a single diameter at breast height (in centimeters) of the nearest
individual to the sample point in the current quarter. Multi-stem data are not allowed.
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The columns may have headers. The expectation is that the data have been recorded in a spreadsheet
in csv format or in a text file in five columns in the order just described. There can be no missing data
(no blank cells) in the file.

The function returns the Relative Density, Relative Cover, Relative Frequency, Importance Value, and
Relative Importance of each species observed along the transect(s). It also returns an estimate of the
overall Absolute Density per hectare, as well as an estimate of the Absolute Density of each species.
The species are listed in descending order of Importance Value.

Examples D.4 and D.5 illustrate the use of importance.val( ) and verify its accuracy by comparing its
output to calculations that appear in the literature. Note: The data files used in all of the examples are
publicly accessible.

EXAMPLE D.4. To illustrate how calculate importance values, return to Example 7 using data from Mueller-Dombois
and Ellenberg (1974), Table 7.4. These data were collected at five sample points at intervals of 5 m in a tropical
insular rainforest near Honolulu, HI in 1972. The authors emphasize that these data are for illustrative purposes only
and that a sample of at least 20 points per stand is recommended. The data are located in a csv file (click on the link)
at http://math.hws.edu/pcqm/PauoaFlats.csv. Here are the first two lines of the data file to show the format.

Sample Pt,Qtr No,Species,Distance m,DBH cm
1,1,Psidium guajava,0.7,5.5
1,2,Acacia koa,1.6,42.5

To read and list the data with R, and then calculate the importance value of each species, use
PauoaFlats <- read.csv("http://math.hws.edu/pcqm/PauoaFlats.csv", header = TRUE)
# list the data
PauoaFlats

Point Quarter Species Distance DBH
1 1 Psidium guajava 0.7 5.5
1 2 Acacia koa 1.6 42.5
1 3 Metrosideros collina 3.5 17.0
1 4 Metrosideros tremuloides 2.0 25.0
2 1 Psidium guajava 1.1 4.0
2 2 Psidium guajava 0.8 5.0
2 3 Psidium guajava 1.9 5.0
2 4 Psidium guajava 1.8 4.0
3 1 Acacia koa 1.3 75.0
3 2 Psidium guajava 0.7 3.0
3 3 Metrosideros collina 1.5 9.0
3 4 Metrosideros collina 2.0 23.0
4 1 Acacia koa 3.1 14.0
4 2 Psidium guajava 1.7 6.0
4 3 Psidium guajava 1.1 5.0
4 4 Acacia koa 1.9 12.0
5 1 Acacia koa 2.5 23.0
5 2 Acacia koa 2.2 18.0
5 3 Psidium guajava 1.4 5.0
5 4 Metrosideros collina 2.8 25.0

# calculate the impartance values
importance.val(PauoaFlats)

## Number of sample points: n = 5
## Overall Absolute Density per Hectare (Cottam & Curtis): 3156.17
##
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Rel Density R Cover R Freq Importance R Import Abs Density
Acacia koa 30.00 78.54 30.77 139.31 46.44 946.85
Psidium guajava 45.00 1.89 38.46 85.35 28.45 1420.28
Metrosideros collina 20.00 13.88 23.08 56.96 18.99 631.23
Metrosideros tremuloides 5.00 5.69 7.69 18.38 6.13 157.81

Up to rounding, the results are the same as in Mueller-Dombois and Ellenberg (1974), pages 113 and 119.

EXAMPLE D.5. The scripts may be used with large files. Baltzer (2007) used 105 sample points to determine
importance values at Yuhas Woods, a botanically rich and diverse area in east-central Indiana.
Yuhas <- read.csv("http://math.hws.edu/pcqm/Baltzer2007.csv", header = TRUE)
tail(Yuhas, n = 4) # list the observations at the last sample point

Point Quarter Species Distance.m DBH.cm
417 105 a Acer saccharum 0.70 42.6
418 105 b Prunus serotina 7.37 19.0
419 105 c Prunus serotina 9.40 13.8
420 105 d Quercus alba 7.52 49.8

importance.val(Yuhas)

## Number of sample points: n = 105
## Overall Absolute Density per Hectare (Cottam & Curtis): 433.61
##

Rel Density R Cover R Freq Importance R Import Abs Density
Acer saccharum 31.67 21.17 23.65 76.49 25.49 137.31
Quercus alba 9.05 18.06 10.14 37.25 12.41 39.23
Ulmus rubra 9.76 6.90 11.15 27.81 9.27 42.33
Carya ovata 7.38 5.88 7.77 21.03 7.01 32.00
Prunus serotina 7.38 3.17 7.09 17.64 5.88 32.00
Carya cordiformis 5.95 5.88 5.41 17.24 5.75 25.81
Aesculus glabra 5.00 2.08 4.73 11.81 3.94 21.68
Fraxinus pennsylvanica 2.86 5.00 3.04 10.90 3.63 12.39
Juglans nigra 1.90 4.74 2.70 9.34 3.11 8.26
Liriodendron tulipifera 2.14 3.60 2.36 8.10 2.70 9.29
Quercus rubra 1.90 3.75 2.36 8.01 2.67 8.26
Quercus muehlenbergii 1.43 2.81 2.03 6.27 2.09 6.19
Acer saccharinum 1.19 4.10 0.68 5.97 1.99 5.16
Celtis occidentalis 2.38 0.88 2.70 5.96 1.99 10.32
Ulmus Americana 2.14 0.55 3.04 5.73 1.91 9.29
Fraxinus americana 1.90 1.01 2.70 5.61 1.87 8.26
Carya glabra 1.43 1.86 2.03 5.32 1.77 6.19
Quercus palustris 0.24 3.13 0.34 3.71 1.24 1.03
Ostrya virginiana 1.19 0.27 1.69 3.15 1.05 5.16
Fagus grandifolia 0.48 1.36 0.68 2.52 0.84 2.06
Quercus velutina 0.48 0.73 0.68 1.89 0.63 2.06
Tilia americana 0.48 0.35 0.68 1.51 0.50 2.06
Gymnocladus dioica 0.24 0.88 0.34 1.46 0.49 1.03
Nyssa sylvatica 0.24 0.65 0.34 1.23 0.41 1.03
Acer rubra 0.24 0.48 0.34 1.06 0.35 1.03
Populus Deltoides 0.24 0.40 0.34 0.98 0.33 1.03
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Rel Density R Cover R Freq Importance R Import Abs Density
Carya laciniosa 0.24 0.19 0.34 0.77 0.26 1.03
Cercis canadensis 0.24 0.09 0.34 0.67 0.22 1.03
Carpinus caroliniana 0.24 0.04 0.34 0.62 0.21 1.03

The results agree with those reported in Baltzer (2007) and Baltzer et al. (2007).

EXERCISE D.4. Create a csv file for the data in Table 1. Verify that the analysis in Table 9 is correct. You will have
to make one modification to Table 1. The multi-stem DBH at one of the quarters must converted to an equivalent
single stem DBH of 10 cm.

EXERCISE D.5. Ten sample points were used to survey a forest plot in the northwestern United States. Determine the
relative importance and density estimate for each of the four species in the data set at http://math.hws.edu/pcqm/fir.csv.
Species key: AGBR = Abies grandis, PSME = Pseudotsuga menziesii, PIPO = Pinus ponderosa, and LAOC = Larix
occidentalis. [Answer. Relative importance (in the order above): 77.17, 12.98, 6.51, and 3.34; Density: 17.80, 2.78,
1.11, 0.56.]

EXERCISE D.6. Analyze a large data set of 255 sample points recorded in Alaska in 2000 by Hollingsworth (2005).
The data are the first 51 transects listed in http://www.lter.uaf.edu/ascii/files/138_pcqbs_ht_diam.txt. Species
key: picmar = Picea mariana, picgla = Picea glauca, alncri = Alnus crispa, betneo = Betula neoalaskana, larlar
= Larix laricina, and salgla = Salix glauca. Determine the relative importance and density estimate for each species.
[Partial answer: Relative Importance: picmar 92.08, betneo 1.27. Density: picmar 3125.34, betneo 29.00.]

Script to Estimate Density

The function density.est( ) may be used to calculate densities of organisms from data collected using the
point-centered quarter method. The function has the following form:

density.est(z = dataframe, method = c("pollard", "cottam", "warde"), conf.level = 0.95)
Details: z is a data frame where each row contains the distances from the sample point to the nearest
individual in each sector. The argument method specifies how the the calculation is made:

"pollard" uses Formula 5.1 on page 12;

"cottam" uses the formula in equation (1) on page 7;

"warde" uses the formula in equation (8) on page 16.

When method = "pollard", a fixed number q of equiangular sectors must be used at each sample
point. For methods "cottam" and "warde" quarters, that is, four equiangular sectors, are required
at each sample point.

The default method is "pollard". The method "warde" should be used for data sets containing
vacant quarters, that is, quarters in which no individual was found. If methods "pollard" or
"cottam" are used with missing observations (NA), the calculation method automatically defaults
to "warde", assuming that quarters were used.

conf.level specifies the confidence level of the interval and has a default value of 0.95. A confidence
interval is computed only when method = "pollard".

EXAMPLE D.6. The data in Example 5.2 (see http://math.hws.edu/pcqm/lamington.csv for format) measured the
distance to the nearest tree in each quarter for 15 sample points. After reading and listing the data, to estimate the
density and calculate a 95% confidence interval using Pollard’s method, use the density.est( ) function with its
default arguments method = "pollard" and conf.level = 0.95, which need not appear in the function call.
lamington <- read.csv("http://math.hws.edu/pcqm/lamington.csv")
lamington
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Qtr.1 Qtr.2 Qtr.3 Qtr.4
1.5 1.2 2.3 1.9
3.3 0.7 2.5 2.0
3.3 2.3 2.3 2.4
1.8 3.4 1.0 4.3
0.9 0.9 2.9 1.4
2.0 1.3 1.0 0.7
0.7 2.0 2.7 2.5
2.6 4.8 1.1 1.2
1.0 2.5 1.9 1.1
1.6 0.7 3.4 3.2
1.8 1.0 1.4 3.6
4.2 0.6 3.2 2.6
4.1 3.9 0.2 2.0
1.7 4.2 4.0 1.1
1.8 2.2 1.2 2.8

density.est(lamington)

##
## Pollard's estimate of density using 4 sectors per point
##
## data: lamington
## No. of sample pts: n = 15
## 95 percent confidence interval:
## 1676.98 2787.47
## sample estimates:
## density per hectare
## 2160.95

The density estimate is identical to that calculated in Example 5.2, but the confidence interval is narrower.
The confidence interval calculated by density.est( ) is exact, using the chi-squared distribution as in
Example B.1, rather than using a normal approximation. To just calculate a 99% confidence interval for the
density, use conf.level = 0.99 and display the result as a vector. The interval widens with an increase in
confidence.
as.vector(density.est(lamington, conf.level = 0.99)$conf.int)

## [1] 1535.59 2996.91

To use the density estimate proposed in Cottam et al. (1953), set method = "cottam".
density.est(lamington, method = "cottam")

##
## Cottam, Curtis, & Hale Point-Centered Quarter Method density estimate
##
## data: lamington
## No. of sample pts: n = 15
## sample estimates:
## density per hectare
## 2200.7

Suppose that we remove two of the observations from the lamington data set to simulate that there were
two quarters in which an individual could not be found. It is now appropriate to use the method described
by Warde and Petranka (1981) to estimate the density.
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The data are located at http://math.hws.edu/pcqm/lamington.vacant.csv. Notice that the missing values are
in rows 9 (trailing comma) and 13 (consecutive commas).

Qtr 1,Qtr 2,Qtr 3,Qtr 4
1.5,1.2,2.3,1.9
3.3,0.7,2.5,2
3.3,2.3,2.3,2.4
1.8,3.4,1,4.3
0.9,0.9,2.9,1.4
2,1.3,1,0.7
0.7,2,2.7,2.5
2.6,4.8,1.1,1.2
1,2.5,1.9,
1.6,0.7,3.4,3.2
1.8,1,1.4,3.6
4.2,0.6,3.2,2.6
4.1, ,0.2,2
1.7,4.2,4,1.1
1.8,2.2,1.2,2.8

lamington.vacant <- read.csv("http://math.hws.edu/pcqm/lamington.vacant.csv", header = TRUE)
# list the data; note that empty numerical cells are replaced with NA
lamington.vacant

Qtr.1 Qtr.2 Qtr.3 Qtr.4
1.5 1.2 2.3 1.9
3.3 0.7 2.5 2.0
3.3 2.3 2.3 2.4
1.8 3.4 1.0 4.3
0.9 0.9 2.9 1.4
2.0 1.3 1.0 0.7
0.7 2.0 2.7 2.5
2.6 4.8 1.1 1.2
1.0 2.5 1.9 NA
1.6 0.7 3.4 3.2
1.8 1.0 1.4 3.6
4.2 0.6 3.2 2.6
4.1 NA 0.2 2.0
1.7 4.2 4.0 1.1
1.8 2.2 1.2 2.8

density.est(lamington.vacant, method = "warde")

##
## Warde & Petranka (1981) estimate of density using 4 sample quarters per
## point
##
## data: lamington.vacant
## No. of sample pts: n = 15, No. of vacant quarters: = 2
## sample estimates:
## density per hectare
## 2024.03

EXAMPLE D.7. Pollard’s method requires the use of equiangular sectors at each point, not necessarily quarters. In
Example 5.2, that is, Example D.6, quarters 1 and 2 were on the eastern side of the transect while quarters 3 and 4
were on the western side. Instead of using quarters at each sample point, assume we divided the world into east and
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west halves and selected the nearest individual in each half. We can use the original data to obtain this information
and then calculate the corresponding density estimate.
East <- apply(lamington[,1:2],1,min)
West <- apply(lamington[,3:4],1,min)
lamington.2 <- data.frame(East, West)
tail(lamington.2, n = 2) # check that the data is as expected

East West
14 1.7 1.1
15 1.8 1.2

density.est(lamington.2)

##
## Pollard's estimate of density using 2 sectors per point
##
## data: lamington.2
## No. of sample pts: n = 15
## 95 percent confidence interval:
## 1414.93 2911.44
## sample estimates:
## density per hectare
## 2027.23

The density estimate is within 6% of the original estimate of 2160.95 trees/ha in Example D.6, but required
about half the sampling effort. However, with less data, the confidence interval is wider.

EXERCISE D.7. A problem in Krebs (1999) asks to estimate the population density and find a 95% confidence
interval for the density for Amabilis fir in the Coast Range of British Columbia using point-quarter data collected at
n = 10 points. The data may be found at http://math.hws.edu/pcqm/Krebs.csv. Use an appropriate R function to
determine the answer. [Answer: Density per hectare: 192.958; confidence interval: [141.387, 263.780].]

EXERCISE D.8. (From Pierce et al. (2012), pp. 299–300.) To estimate the number of active bird nests in a study
area during breeding season, a transect with five sample points spaced 100 m apart was used and the distances (in m)
to the nearest nest in each quarter were recorded. I: 0, 15, 15, 15; II: 10, 7, 7, 5; III: 1, 12, 3, 11; IV: 10, 10, 12, 1;
V: 11, 9, 9, 7. Estimate the number of nests per hectare and determine a 95% confidence interval for the density.
[Answer: Density per hectare 130.77; confidence interval: [84.08, 204.21].]

Script to Estimate Density Using Angle-Order Methods

Morisita (1957) combined the angle and order methods by dividing the region about each sample point into q
equiangular sectors and recording the distance to the kth nearest individual in each sector. The function
angle.order.est( ) calculates densities of organisms from data collected in this way.

angle.order.est(z = dataframe, k = 3, method = c("auto", "morisita1", "morisita2",
"morisita"), conf.level = 0.95)

Details: z is a data frame where each row contains the q observations for a single sample point. The
argument k specifies that the observations are distances to the kth nearest individual in each of the q
equiangular sectors. No missing observations are allowed. The default is k = 3. The argument method
specifies how the the calculation is made:

"auto" is the default method and uses Morisita’s guidelines (see page 28) to estimate the density. If

λ̂1 > λ̂2, then λ̂1 is used. Otherwise λ̂0 = λ̂1 + λ̂2

2 is used. This method requires that k ≥ 3.
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"morisita1" uses equation (34): λ̂1 = k − 1
πn

n∑
i=1

q∑
j=1

1
R2

(k)ij
. This method requires that k ≥ 3.

"morisita2" uses equation (35): λ̂2 = kq − 1
πn

n∑
i=1

q∑q
j=1 R

2
(k)ij

. This method requires that kq ≥ 2.

"morisita" uses equation (32): λ̂ = q(kqn− 1)
π
∑n
i=1
∑q
j=1 R

2
(k)ij

. Note: If k = 1, then this estimate is the

same as (20), which is computed when method = "pollard" in the function density.est( ).
Instead, if q = 1, then this estimate is the same as (28).

conf.level specifies the confidence level of the interval and has a default value of 0.95. A confidence
interval is computed only when method = "morisita".

EXAMPLE D.8. Redo Example B.2 that used the closest trees to the 15 sample points in Example 5.2 to estimate
the density and find a 95% confidence interval for this estimate. This requires using method = "morisita" and k = 1
in the angle.order.est( ) function. Re-use the lamington data from Example D.6. The results, up to rounding, are
the same as calculated earlier in Example B.2.
lamington.closest <- data.frame(min.dist = apply(lamington, 1, min))# closest individual
angle.order.est(lamington.closest, k = 1, method = "morisita")

##
## Morisita angle-order density estimate for randomly distributed
## populations with 1 sector at each sample point using the closest
## individuals.
##
## data: lamington.closest
## Number of sample points: n = 15
## 95 percent confidence interval:
## 1594.47 4461.20
## sample estimates:
## density per hectare
## 2658.91

EXAMPLE D.9. In Example B.3 we used (36) and the lamington data in Example 5.2 with k = 1 to obtain a density
estimate of 2078 trees/ha. Equation (36) corresponds to method = "morisita2" and k = 1.
angle.order.est(lamington, k = 1, method = "morisita2")

##
## Morisita 2 density estimate with 4 sectors at each sample point using
## the closest individual in each sector.
##
## data: lamington
## Number of sample points: n = 15
## sample estimates:
## density per hectare
## 2078.42

Script to Estimate Density Non-parametrically

Appendix C described a distance-based, non-parametric estimate of plant density developed by Patil et al.
(1982). The data for this method consist of the distances of the nearest individual to each sample point. The
function np.density.est( ) may be used to calculate densities in this way.

np.density.est(z = dataframe, conf.level = 0.95)
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Details: z is a data frame comprising a single column of distances of the nearest individual to each
sample point. Missing observations should be indicated by NA, though the function should automatically
detect blank entries. conf.level specifies the confidence level of the interval and has a default value of
0.95.

EXAMPLE D.10. Example C.1 used the method of Patil et al. (1982) to non-parametrically estimate density and
locate a 95% confidence interval. It employed the lamington.closest data set from Example D.8 that listed the
distances to the nearest trees from 15 sample points. The calculations below agree with those in Example C.1.
np.density.est(lamington.closest)

##
## Patil, et. al. (1982) non-parametric density estimate using the closest
## individual at each sample point.
##
## data: lamington.closest
## No. of sample pts: n = 15
## 95 percent confidence interval:
## 451.802 3950.144
## sample estimates:
## density per hectare
## 2200.97

Example C.2 also used the data in Example C.1 (that is, lamington.closest), but omitted all five distances
greater than 1.0 m. The results using the truncated data agree with those in Example C.2.
lamington.trunc <- lamington.closest
# substitute NA for distances greater than 1 m
lamington.trunc[lamington.trunc > 1] <- NA
np.density.est(lamington.trunc)

##
## Patil, et. al. (1982) non-parametric density estimate using the closest
## individual at each sample point.
##
## data: lamington.trunc
## No. of sample pts: n = 15, No. of truncated points: = 5
## 95 percent confidence interval:
## 13.2614 3140.8984
## sample estimates:
## density per hectare
## 1577.08

EXAMPLE D.11. To illustrate their method, Patil et al. (1982) used data from a 100-point transect in Batcheler
(1971). These data may be found at http://math.hws.edu/pcqm/Batcheler1971.csv. The original data were recorded
in feet and must be converted to meters before calculation. Further, the density was given in acres, so the output of
np.density.est( ), which is in hectares, must be converted to acres.
Batcheler <- read.csv("http://math.hws.edu/pcqm/Batcheler1971.csv", header = TRUE)
# list the last four data values
tail(Batcheler, n = 4)

Batcheler.1971
97 18.5
98 25.7
99 20.6
100 25.6
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BatchelerMeters <- 0.30480 * Batcheler # convert feet to meters
np.density.est(BatchelerMeters)

##
## Patil, et. al. (1982) non-parametric density estimate using the closest
## individual at each sample point.
##
## data: BatchelerMeters
## No. of sample pts: n = 100
## 95 percent confidence interval:
## 200.826 494.387
## sample estimates:
## density per hectare
## 347.606
# convert to acres
cat("Density estimate:", 0.404686*np.density.est(BatchelerMeters)$est)

## Density estimate: 140.671
cat("Confidence interval:", 0.404686*np.density.est(BatchelerMeters)$conf.int)

## Confidence interval: 81.2713 200.071

Up to rounding, these results agree with Patil et al. (1982, page 247), where the density is given as 140 plants
per acre. The standard deviation is given as 30 plants. From (42), the confidence interval limits using 140
and 30 are shown below, and agree with those calculated above, given rounding.
# confidence limits
140 + 1.96 * c(-30, 30)

## [1] 81.2 198.8

For comparison, we estimate the density with Pollard’s method.
cat("Density estimate:", 0.404686*density.est(BatchelerMeters, method = "pollard")$est)

## Density estimate: 142.485
cat("Confidence interval:", 0.404686*density.est(BatchelerMeters, method = "pollard")$conf.int)

## Confidence interval: 117.103 173.47

The two density estimates differ by 1.5%. However, the 95% confidence interval is nearly twice as wide using
the non-parametric method, as Patil et al. (1982) warned.

Suppose that the sampling effort is truncated with a maximum search radius of 7.8 ft. That is, if no plant is
found within that radius of the sample point, then the search is terminated. (The value of 7.8 ft was used in
Patil et al. (1979) because it eliminates half the data.) To carry out the analysis, first truncate the data.
# substitute NA if > 7.8 ft
BatchelerMeters[BatchelerMeters > 0.30480 * 7.8] <- NA
np.density.est(BatchelerMeters)

##
## Patil, et. al. (1982) non-parametric density estimate using the closest
## individual at each sample point.
##
## data: BatchelerMeters
## No. of sample pts: n = 100, No. of truncated points: = 50
## 95 percent confidence interval:
## 170.299 620.798
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## sample estimates:
## density per hectare
## 395.548
# convert to acres
cat("Density estimate:", 0.404686*np.density.est(BatchelerMeters)$est)

## Density estimate: 160.073
cat("Confidence interval:", 0.404686*np.density.est(BatchelerMeters)$conf.int)

## Confidence interval: 68.9176 251.228

The result is within 15% of the original density estimate and would have required just half the sampling
effort. However, the confidence interval is about 1.5 times wider than before.
EXERCISE D.9. We saw in Exercise D.2 that Balza et al. (2022) used
Pollard’s method to estimate the density of active Magellanic penguin nests
on Goffré Island on the coast of southern Argentina. There they estimated
that there were

95.1 nests/hectare;
95% confidence interval: [72.4, 125.0] nests/hectare.

In a companion study on neighboring Observatorio Island, for technical
reasons they used Patil’s method to estimate the density of active nests that
island. They found that estimated Magellanic penguin densityon Observatorio
Island was similar to that on Goffré Island:

80.4 nests/ha;
95% confidence interval: [42.4, 118.5] nests/hectare.

Photo of Magellanic penguins on Observatorio Island courtesy of Ulises Balza.

Balza et al. (2022) have made their data publicly available on GitHub. Carry
out your own analysis of their data as follows.

• Use the function read.csv( ) to download their data from https://raw.githubusercontent.com/ulisesbalza/
magellanic_penguin_density/main/data_observatorio_np.csv and name the new file Observatorio

• Use the function np.density.est( ) to determine the density.

How many points were in their data set? Do your results agree with theirs?

Re-analyzing Data

The following functions may be used to further analyze survey data that consist of the rectangular co-
ordinates of all the trees in a particular plot. This might be done to determine which methods pro-
vide accurate density estimates for particular forest types. These functions may be downloaded using
source("http://math.hws.edu/pcqm/survey.txt").

convex.hull(z = dataframe, lcolor = "orange", display = TRUE)

Details: z specifies a data frame with two columns containing the x and y coordinates, in meters, of
all individuals in the area surveyed; lcolor specifies the color used to draw the convex hull (smallest
convex polygon, i.e., “rubber band”) containing the surveyed individuals, with default set to "orange".

Output: The area of the convex hull and the density calculated using the hull area are reported.
The area of the smallest rectangle, with sides parallel to the axes, that contains the data and the
corresponding density are also reported. If display = TRUE, a plot of the data, its convex hull, and
bounding rectangle are drawn.

manual.survey <- function(z = dataframe, t.coords = c(0, 0, 10, 10), points = 10,
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transects = 2, k = 1, horizontal = TRUE, display = TRUE)

Details: manual.survey( ) takes the locations of all individuals in a specified area and produces the
data required to estimate density using the functions described earlier in this section. z specifies a data
frame with two columns containing the x and y coordinates, in meters, of all individuals in the area
surveyed; t.coords is a vector of the form (x1, y1, x2, y2, . . . ) containing the coordinates of either two
or four points that are used to determine either one or more transects, respectively. If four points are
used, they should be listed counter-clockwise starting from the lower left. points specifies the number
of sample points; transects specifies the number of transects; k specifies that the kth closest individual
is sampled in each quarter with default k = 1; display is the logical value specifying whether the
forest is shown, with default TRUE; and horizontal is a logical value specifying whether the orientation
of the transects is horizontal (by default TRUE) or not (vertical).

Transects: If t.coords contains four components specifying two points, then these two points are used
as the endpoints of a single transect with the specified number of sample points distributed evenly along
its length. If t.coords contains eight components specifying four points and horizontal = TRUE, then
the first two points are used as the endpoints of the bottommost transect and the remaining two points
are used as the endpoints of the uppermost transect. Any remaining transects are interpolated between
these two with the sample points distributed evenly along them. If horizontal = FALSE, the first and
fourth points and second and third points determine the outermost transects. Note: The lines defining
the quarters are always parallel to the axes regardless of whether the transects are.

Output: The area of the convex hull and the density calculated using the hull area are reported, as are
the area of the bounding rectangle the corresponding density. A data frame comprised of the distances
to the kth closest individual in each quarter is returned. If display = TRUE, a plot of the data, its
convex hull and bounding rectangle, and the transects with sample points as specified are drawn, with
the kth closest individual in each quarter highlighted.

EXAMPLE D.12. In a study measuring the impact of deer browsing on tree regeneration, Newell (2015) collected
coordinate data for all 257 trees in a plot between Snell and Pre-Emption Roads in Geneva, NY (see http://math.hws.
edu/pcqm/NewellSouth.csv). To determine the site’s convex hull and bounding rectangle areas and the corresponding
densities, use the convex.hull( ) function. A plot is shown later in this example.
source("http://math.hws.edu/pcqm/survey.txt")

## Downloaded convex.hull( )
## Downloaded manual.survey( )
NewellSouth <- read.csv("http://math.hws.edu/pcqm/NewellSouth.csv")
convex.hull(NewellSouth, display = FALSE)

## Data: NewellSouth
## Area (ha) Density (per ha)
## Convex Hull 0.241 1056.00
## Bounding Rectangle 0.274 930.50

The actual density is known, so there would seem to be no reason to estimate it. However, if one now wanted
to sample, rather than completely survey, other similar areas, then it would be useful to know which sampling
techniques provide accurate estimates. One can test these techniques using the previously collected data. To
place transects on the site and then see how various density estimates compare to the actual density, use the
manual.suvey( ) function. Its output can be analyzed with an appropriate density function. To illustrate
the idea, we use three horizontal transects with a total of 15 sample points to which are measured the closest
individuals in each quarter. We then use Pollard’s method to analyze the data.
Newell.horiz <- manual.survey(z = NewellSouth, t.coords = c(15, 8, 65, 8, 65, 26, 15, 26),

points = 15, transects = 3, k = 1)

## Data: NewellSouth
## Area (ha) Density (per ha)
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## Convex Hull 0.241 1056.00
## Bounding Rectangle 0.274 930.50
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# data for the last three sample points
tail(Newell.horiz, n = 3)

Qtr 1 Qtr 2 Qtr 3 Qtr 4
13 3.036445 1.14017 4.20000 2.60192
14 6.184658 3.35261 2.98329 6.70298
15 0.728011 2.15407 3.80789 2.15407

density.est(z = Newell.horiz, conf.level = 0.95)

##
## Pollard's estimate of density using 4 sectors per point
##
## data: Newell.horiz
## No. of sample pts: n = 15
## 95 percent confidence interval:
## 639.291 1062.625
## sample estimates:
## density per hectare
## 823.787

The transects and sample points are depicted in green. The nearest trees to each sample point are indicated
with up or down triangles whose color alternates between red and blue corresponding to the transect. This
may be used to identify whether the same tree is resampled from different points. The distances from the
sample points to the nearest tree in each quarter can be listed and then analyzed using techniques discussed
earlier. In this example, the 95% confidence interval for Pollard’s method contains the actual density using
the convex hull.

If the same corner points are used with vertical transects (horizontal = FALSE), the array of sample points
is different. There are three points in each of five horizontal rows rather than five points in each of three
horizontal rows as above. The density estimate using these vertical transects happens to be more accurate.
Newell.vert <- manual.survey(z = NewellSouth, t.coords = c(15, 8, 65, 8, 65, 26, 15, 26),

points = 15, transects = 3, k = 1, horizontal = FALSE)
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## Data: NewellSouth
## Area (ha) Density (per ha)
## Convex Hull 0.241 1056.00
## Bounding Rectangle 0.274 930.50
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density.est(z = Newell.vert, conf.level = 0.95)

##
## Pollard's estimate of density using 4 sectors per point
##
## data: Newell.vert
## No. of sample pts: n = 15
## 95 percent confidence interval:
## 679.46 1129.39
## sample estimates:
## density per hectare
## 875.548

Morisita (1957) suggested measuring the distance to the third closest tree in each quarter (k = 3). For these
data, this method gives quite a good estimate of the actual density of 1056 trees/ha.
Newell.third <- manual.survey(z = NewellSouth, t.coords = c(15, 8, 65, 8, 65, 26, 15, 26),

points = 15, transects = 3, k = 3, display = FALSE)
angle.order.est(z = Newell.third, k = 3, method = "auto")

##
## Morisita Practical Procedure for density estimate with 4 sectors at
## each sample point using the third closest individuals. m1 > m2 (1045.75
## > 968.82). Use m1.
##
## data: Newell.third
## Number of sample points: n = 15
## sample estimates:
## density per hectare
## 1045.75

EXAMPLE D.13 (Susquehanna Shale Hills Critical Zone Observatory). The Susquehanna Shale Hills Critical Zone
Observatory is an 8 hectare, first-order catchment in the Susquehanna River basin (see http://criticalzone.org/shale-
hills/infrastructure/field-area/susquehanna-shale-hills-critical-zone-observatory/).
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Among its publicly available resources is a data set of the locations of all trees in the basin (see Eissenstat and Kaye
(2015)). The (x, y)-location data are available at http://math.hws.edu/pcqm/czo.csv. The data used below were
modified (translated) by subtracting the minimum values of x and y from their respective coordinates to simplify the
plot.
czo <- read.csv("http://math.hws.edu/pcqm/czoNormalized.csv")
czo.horiz <- manual.survey(z = czo, t.coords = c(75, 45, 400, 125, 420, 220, 95, 140),

points = 24, transects = 4, k = 1)

## Data: czo
## Area (ha) Density (per ha)
## Convex Hull 8.507 243.80
## Bounding Rectangle 12.361 167.80
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density.est(z = czo.horiz)

##
## Pollard's estimate of density using 4 sectors per point
##
## data: czo.horiz
## No. of sample pts: n = 24
## 95 percent confidence interval:
## 177.898 265.685
## sample estimates:
## density per hectare
## 217.339

Because of the shape of the plot, the bounding rectangle is not useful. The confidence interval for the density
contains the actual density of 243.8 trees/ha determined by the convex hull.

The next analysis uses the same four corner points for the transects but with a vertical orientation and
Morisita’s recommendation for a third-order analysis. The resulting estimate is within 4% of the actual value.
czo.third.vert <- manual.survey(z = czo, t.coords = c(75, 45, 400, 125, 420, 220, 95, 140),

points = 24, transects = 4, k = 3, horizontal = FALSE)

## Data: czo
## Area (ha) Density (per ha)
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## Convex Hull 8.507 243.80
## Bounding Rectangle 12.361 167.80
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angle.order.est(z = czo.third.vert, k = 3, method = "auto")

##
## Morisita Practical Procedure for density estimate with 4 sectors at
## each sample point using the third closest individuals. m1 > m2 (234.65
## > 232.19). Use m1.
##
## data: czo.third.vert
## Number of sample points: n = 24
## sample estimates:
## density per hectare
## 234.651
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